

Bayesian estimation for collisional thermometry

Gabriel O. Alves[†], Gabriel T. Landi[†]

Departmento de Física dos Materiais, Instituto de Física, USP, São Paulo†

Introduction

We consider a qubit collisional model as a thermometric platform. It's been shown that the out-of-equilibrium steady state dynamics of the collisional model can be used, for instance, to enhance precision, surpassing the thermal Fisher information [1]. Here we construct a framework for analyzing collisional thermometry using Bayesian inference. In particular, we explicitly plot the estimator and compare the results with the Cramér-Rao bound.

Qubit Collisional Model

The system undergoes alternating and piecewise interactions. First through a system-environment interaction:

$$\frac{d\rho_S}{dt} = \mathcal{L}(\rho_S) = \gamma(\bar{n}+1)\mathcal{D}[\sigma_-^S] + \gamma \bar{n}\mathcal{D}[\sigma_+^S],$$

and the through partial-swap interactions with the ancillas:

$$U_{SA_n} = \exp\left\{-i\tau_{SA}g(\sigma_+^S\sigma_-^{A_n} + \sigma_-^S\sigma_+^{A_n})\right\}$$

This results in a stroboscopic map:

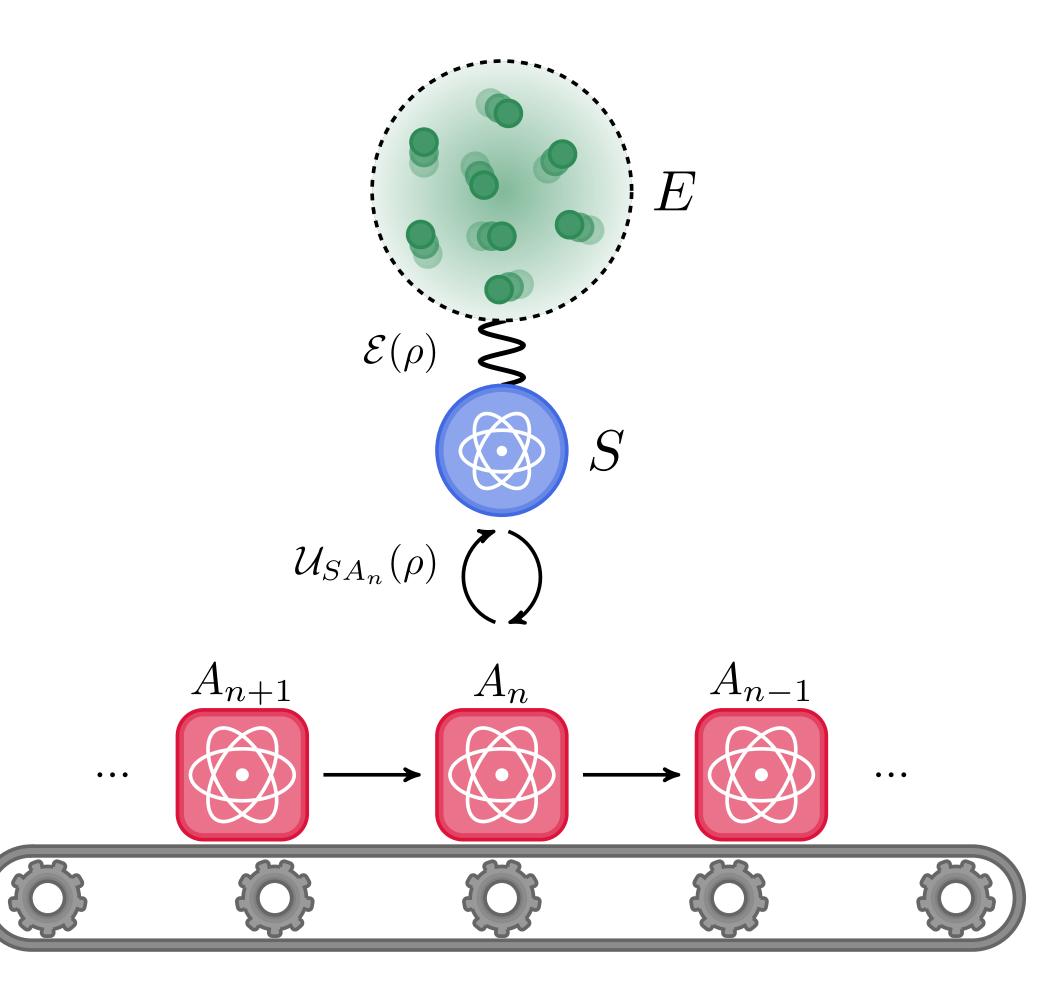
Additionaly, the posterior distribution converges to a Gaussian, with variance proportional to the Fisher information calculated for the true temperature:

$$P(T|\mathbf{X}) \approx \sqrt{\frac{nF(T_0)}{2\pi}} e^{-\frac{nF_0(T-T_0)^2}{2}}, \quad (n \text{ large}).$$

We can also analyse the problem in terms of a figure of merit which is independent of the temperature. We call it the *Bayesian* error:

$$\epsilon_B(\hat{T}(\boldsymbol{X})) = \int P(T)dT \int (T - \hat{T})^2 P(\boldsymbol{X}|T)d\boldsymbol{X}$$

Note that the figure of merit above depends only on the estimator, the prior and the likelihood, and it's *not* conditioned neither on the outcomes nor on a particular temperature.



$\rho_S^n = \operatorname{tr}_{A_n} \{ \mathcal{U}_{SA_n} \circ \mathcal{E}(\rho_S^{n-1} \otimes \rho_A^0) \}$

We consider local measurements in the computational basis at the steady state, calculated from the map above.

Bayesian Inference

We can use Bayes theorem to construct posterior distributions, which yield estimators. A natural choice of estimator is the posterior mean:

$$\hat{T}(\boldsymbol{X}) = \int TP(T|\boldsymbol{X})dT$$

The quantity above minimizes the mean-squared error and saturates the CRB asymptotically.

Bayesian updating

The results below show how the distribution gradually peaks around the true value of the temperature. We can also explicitly plot the estimator and the MSE as a function of n.

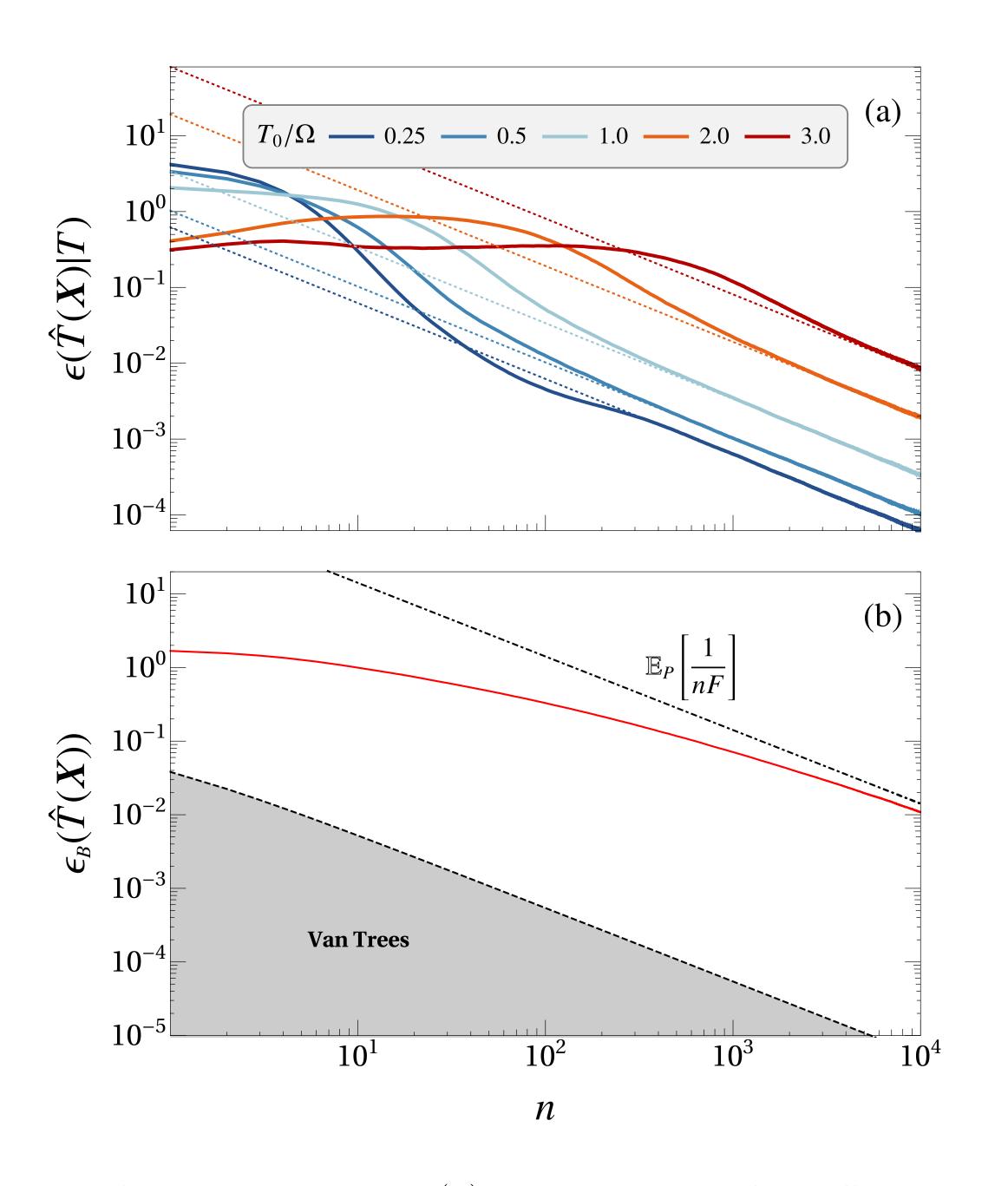
Van Trees-Schützenberger Inequality

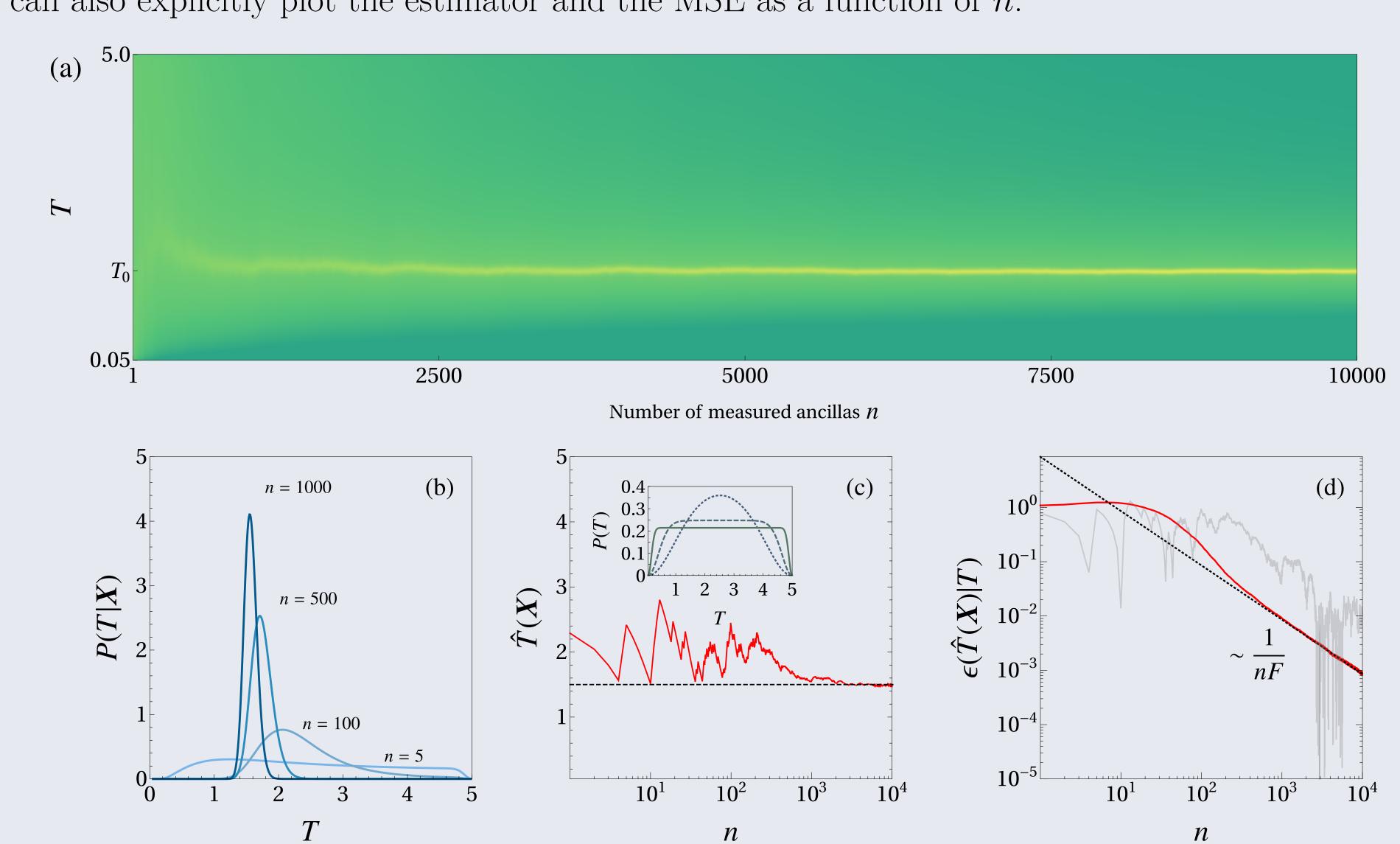
╚╧╋

This inequality establishes a bound for the Bayesian risk defined above:

$$\varepsilon_B(\hat{T}(X)) \ge \frac{1}{\mathbb{E}_P[F(T)] + F_P},$$

where $\mathbb{E}_{P}[F(T)]$ is the Fisher information averaged over the prior.





The figure above shows (a) the MSE error for different temperatures and (b) the Bayesian risk, which is compared with the Van Trees-Schützenberger inequality.

GOA acknowledges the financial support from FAPESP (Grant No. 2020/16050-0) and CAPES.

 [1] Stella Seah, Stefan Nimmrichter, Daniel Grimmer, Jader P. Santos, Valerio Scarani, and Gabriel T. Landi. Collisional Quantum Thermometry. *Physical Review Letters*, 123(18):180602, oct 2019.

References

[2] Gabriel O. Alves and Gabriel T. Landi. Bayesian estimation for collisional thermometry, 2021.

