Fluctuation Theorem for the DLD Model
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Abstract

The applicability of Zwanzig-Caldeira-Leggett
(ZCL) [1] model is rather simple to explain the
physical phenomena associated with a general-
ized brownian motion. In the usual formulation,
one should specify the stochastic force &, which
arises from interaction with some fluctuating ho-
mogeneous field £(t). However, more generally,

this force may arise from the interaction with
a disordered potential £(x,t) = —VU(x,t).
In the latter case the spatial auto-correlations

of the force plays a role.
want to elucidate some
localization and dissipation’ model (DL
possible thermodynamic effects, and a

In this poster, we
noints of the ‘diffusion,
D) [2,3],
SO non-

equilibrium fluctuations caused by the local

Interaction.

Model

As in the ZCL model, the classical DLD model con-
siders a motion of a particle under the influence
of bath which is composed of infinitely many os-
cillators. However, in this case, the particle inter-
acts locally with the noscillator through u(x—x,),
where x, is the location of the corresponding os-
cillator. The DLD Hamiltonian is

H=Hs+H,+ Hg,

p
Hs = ™. V(x),
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Figure 1: ZCL model (fig. a) and DLD model (fig.
b) in perspective.

Future perspectives

We expect to proceed with studying

B the possible implications to the steady

state given the range o

B the DLD fluctuation theorem

B the thermodynamics of the DLD model (lin-
ear response, entropy production)
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DLD Kramers Equation

B A master equation is derived for the DLD model [2]
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where

Ge(p, o) = FT - Wr(r) g
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Gu(p. o) = %]:T{W(r) — w(0)} .

[o] + V’(X)%D [o] +~

0

a_p[GF*PQ]+V(GN*Q),

Stuttgart

@CNPq

(5)

For DLD model, the correlations of the stochastic
force satisfy

(C(x, t)C(x", 1)) = w(x — x")o(t — '),

where, due to the local interaction with bath modes,
the space correlation function w reads

B Aso = I/h — 0, the standard Kramers equa-

tion is restored

2 D o+ v L

That means, the Zwanzig—Caldeira—Leggett (ZCL)
model [1] constitutes a special formal limit of the DLD

model [2,3].

u(x — x"u(x")dx’.

(6)
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Figure 2: Representation of the range of interaction,
described by o, between the system (white particle)
and the bath oscillators (black ones).

DLD Langevin Equation

B Starting from first principles in classical mechanics, a Langevin equation can be derived for the DLD

model:

82

m—osx = =V/(x) + /O ds [y(t — s)w” (x(t) — x(s))] %X(s) (1),

(7)

B Non-Markovian effects are present in the previous Langevin equation. However, when considering
an Ohmic bath, i.e., v(t) = vd(t), the resulting equation is the standard Langevin equation, since

[ de [t = 9w (x(6) = x(6)] x(5) = 1w (©)5x(e) = 1 5x(e)

DLD Smoluchowski Equation

B In fact, it is simpler to treat the master equation (5) in an overdamped regime. An overdamped

master equation is given as follows
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B where ¢ ~ g/~. A solution can be found for a harmonic potential and hence a steady state

Pk, t) = FTxok {p(x, t)} = exp
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where D, ~ ¢". As¢ — 0, i.e., D, — 0, the standard Ornstein Uhlenbeck solution is restored

p(x) = \/

A
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