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Introduction: A Superposition of Temperatures Case 2: One Bath (Superposition of Purifications) Results: Comparing Cases through Visibility
* Temperature & time are two important parameters in standard + Superposition of purifications: |¥) = Z% Wf;ﬂ Yo * Visibility as an indicator of ‘temperature coherence’
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* Probe interacts with bath via unitary evolution

e Can be thermal (if 5=
* Thermalises to temperature of bath (T Bo=P1)
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Case 1: Two Baths (SU perposition of Channels)  Each interaction occurs in finite time, with interaction parameter
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* Quantum-controlled interactions with baths, analogous to Mach- ;
Zehnder interferometer p, ;e Baths = A
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. . Input State ¢, picions : Unitary evolution of probe
* Final state (after measuring control) is with bath DOF under the GADC unitary * Two situations which result in a ‘Superposition of Temperatures’
(#) _ 1( Bo L gt pP00,0 5 1Tt e pP1 L oy O 50) e Changes in 1 alter number of collisions to reach full thermalisation * Two separated baths: thermalisation is suppressed
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