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INfroduction

Resource theory is a general, model-independent
approach aiming to understand the qualitative
notfion of resource guanftitatively [1]. In a given
resource theory, free operations are physical pro-
cesses that do not create resource and are con-
sidered zero-cost. This brings the natural guestion:

For a given free operation, what is its ability
fo preserve aresourcee

We tormulate this abillity as resource preservabillity.

Quantitying resource preservabllity

Goals

Studying possible aplications

Formulation

A state resource theory can be written as a triplet
(R, Fr,Op), which are

Resource Free quantity Free operation
R Fr Op
The given States that do not Physical processes
resource have the resource TNAT AO NOT gener-
(free states) ate the resource

A resource preservability theory is induced by a
given state resource theory as follows
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Now we can quantify .

resource preservability... Free-superchanels

A function Py is a R-preservability monotone if

Pr(E) = 0 & equality holds iff € € Op
Pr|lF(E)| < Pr(E) Viree superchannel F

Quantification

We consider the following measure

Pp(Es) :=Ai2£NSEPD[(ES & KA) (Psa), (As & KA)(JOSA)]

sEUR

where the optimization Is taken over all possible
ancillary systems (A ), channels A, in this system
with property infroduced earlier, joint input states
psa , and R-annihilating channels As. Also, D is
a distance measure satisfying

D(p,0) = 0 & equality holds iff p = o

D|E(p),E(o)] < D(p,0) Vchannel €

ReSU H‘ Pp is a R-preservability monotone

Application to Thermo

Using max-relative entropy defined by D...(p|lo)
= log, infii|p < Ao} [2] and set athermality as the
resource (with the thermal state ¥ ), we define

1+ BE(NV) :=sup inf{n | 3Ep- s. t.
o

[ec(N ()@ YD) —y ||, <]

where £p is a channel that can be realized by the
thermalization model given in Ref. [3].

Result

Given a Gibbs-preserving channel
Nand 0 <e<1:

1
P N
BE(WV) < 2 Dmax (V)

if V is full-rank, V' Is coherence-annihilating, and
energy subspace condition [3] Is satisfied, then

2
Pmin (V) |

where p.:- (¥) is the smallest eigenvalue of V.

2Ppmax(V) < BE(NV) A 1

As an application, this connects communication
and thermodynamics:

Resull

Assuming the same conditions as
dbeveiomi e vEailic <neve
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