## Resource Preservability, Thermodynamics, & Communication

Quantum 4, 244 (2020) & PRX Quantum 2, 020318 (2021) andrew791006@gmail.com

# Chung-Yun Hsieh (C) F(C)

#### Introduction

Resource theory is a general, model-independent approach aiming to understand the qualitative notion of resource quantitatively [1]. In a given resource theory, free operations are physical processes that do not create resource and are considered zero-cost. This brings the natural question:

For a given free operation, what is its ability to preserve a resource?

We formulate this ability as resource preservability.



Goals

Quantifying resource preservability

Studying possible aplications

#### Formulation

A state resource theory can be written as a triplet  $(R, \mathcal{F}_R, \mathcal{O}_R)$ , which are

| Resource           | Free quantity                                      | Free operation                                       |
|--------------------|----------------------------------------------------|------------------------------------------------------|
| $\boldsymbol{R}$   | $\mathcal{F}_R$                                    | $\mathcal{O}_R$                                      |
| The given resource | States that do not have the resource (free states) | Physical processes that do not generate the resource |

A resource preservability theory is induced by a given state resource theory as follows

| Resource                    | Free quantity                                                                    | Free operation                                                              |
|-----------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| The ability to preserve $R$ | Channels in $\mathcal{O}_R$ such that they only output states in $\mathcal{F}_R$ | Supperchannels of the following form                                        |
| <b>R</b> -Preservability    | <b>R</b> -annihilating channels                                                  | $-\Lambda_{+}$ $-\widetilde{\Lambda}$ $-\widetilde{\Lambda}$                |
|                             | Denoted by $\mathcal{O}_R^N$                                                     | $\Lambda_{\pm} \in \mathcal{O}_R : \widetilde{\Lambda} \in \mathcal{O}_R^N$ |
|                             |                                                                                  | s.t. $\widetilde{\Lambda} \otimes \Lambda \in \mathcal{O}_R^N$              |
| Now we can quantify         |                                                                                  | $\forall \Lambda \in \mathcal{O}_R^N$                                       |
|                             |                                                                                  |                                                                             |

A function  $P_R$  is a R-preservability monotone if

Free-superchanels

 $P_R(\mathcal{E}) \geq 0$  & equality holds iff  $\mathcal{E} \in \mathcal{O}_R^N$  $P_R[F(\mathcal{E})] \leq P_R(\mathcal{E}) \ \forall \text{ free superchannel } F$ 

resource preservability...

### Quantification

We consider the following measure

$$P_D(\mathcal{E}_S) := \inf_{\Lambda_S \in \mathcal{O}_R^N} \sup_{A} D[(\mathcal{E}_S \otimes \widetilde{\Lambda}_A)(\rho_{SA}), (\Lambda_S \otimes \widetilde{\Lambda}_A)(\rho_{SA})]$$

where the optimization is taken over all possible ancillary systems (A), channels  $\widetilde{\Lambda}_A$  in this system with property introduced earlier, joint input states  $ho_{\mathsf{SA}}$  , and R-annihilating channels  $\Lambda_{\mathsf{S}}$  . Also, D is a distance measure satisfying

 $P_D$  is a R-preservability monotone

# Application to Thermo

Using max-relative entropy defined by  $D_{\text{max}}(\rho \| \sigma)$  $= \log_2 \inf{\{\lambda | \rho \le \lambda \sigma\}}$  [2] and set athermality as the resource (with the thermal state  $\gamma$ ), we define

$$1 + \mathcal{B}^{\epsilon}(\mathcal{N}) \coloneqq \sup_{\rho} \inf \left\{ n \mid \exists \mathcal{E}_{\mathcal{C}} \, s. \, t. \right.$$
$$\left\| \mathcal{E}_{\mathcal{C}}(\mathcal{N}(\rho) \otimes \gamma^{\otimes (n-1)}) - \gamma^{\otimes n} \right\|_{1} < \epsilon \right\}$$

where  $\mathcal{E}_{\mathcal{C}}$  is a channel that can be realized by the thermalization model given in Ref. [3].

Result Given a Gibbs-preserving channel  $\mathcal{N}$  and  $0 \le \epsilon < 1$ :

$$\mathcal{B}^{\epsilon}(\mathcal{N}) \leq \frac{1}{\epsilon^2} 2^{P_{D_{\max}}(\mathcal{N})}$$

If  $\gamma$  is full-rank,  $\mathcal N$  is coherence-annihilating, and energy subspace condition [3] is satisfied, then

$$2^{P_{D_{\max}}(\mathcal{N})} \leq \mathcal{B}^{\epsilon}(\mathcal{N}) + \frac{2\sqrt{\epsilon}}{p_{\min}(\gamma)} + 1$$

where  $p_{\min}(\gamma)$  is the smallest eigenvalue of  $\gamma$ .

As an application, this connects communication and thermodynamics:

Result Assuming the same conditions as above, for  $0 \le \epsilon, \delta < 1$  we have

$$C_{(1)}^{\delta}(\mathcal{N}) \leq \log_2 \left( \mathcal{B}^{\epsilon}(\mathcal{N}) + \frac{2\sqrt{\epsilon}}{p_{\min}(\gamma)} + 1 \right) + \log_2 \frac{1}{1 - \delta}$$

[2] N. Datta, IEEE Trans. Inf. Theory **55**, 2816 (2009).

[3] C. Sparaciari et al, Comm. Phys. **4**, 3 (2021).