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Abstract
We study several variations of the question of minimum-error discrimination

of thermal states. Except of providing the optimal values for the probability error
we also characterize the optimal measurements. For the case of fixed Hamiltonian
we show that for a general discrimination problem the optimal measurement is the
measurement in the energy basis of the Hamiltonian. We identified critical tempera-
ture determining whether the given temperature is best distinguishable from thermal
state of very high, or very low temperatures. Further, we investigate the decision
problem whether the thermal state is above, or below some threshold value of the
temperature. Also in this case the optimal minimum-error measurement is the mea-
surement in the energy basis. This is no longer the case once the thermal states to be
discriminated have different Hamiltonians. We analyze specific situation when the
temperature is fixed, but the Hamiltonians are different. For the considered case we
show the optimal measurement is independent of the fixed temperature and also of
the strength of the interaction.

Introduction
For quantum systems the temperature is assigned to density operators of
the form

ρβ(H) =
e−βH

tre−βH
, (1)

For a general binary minimum-error discrimination the optimal value of
success probability is known [?] to be given by the Helstrom formula

perror =
1

2
(1− 1

2
||%1 − %2||1), (2)

Goals
Our goal is simple: evaluate the minimum error probability for thermal
states and analyse the results. We are interested to understand when the
difference of the temperatures matters, i.e. increases the distingusihability,
and how the parameters of the Hamiltonian affects the distinguishability. Is
it easier to distinguish larger, or smaller temperatures? Does the strength
of the interaction increases the distinguishability, or not?

1 Binary case with fixed Hamiltonian

||ρ1 − ρ2||1 =
∑
j

∣∣∣∣exp(−β1Ej)

Z1
−

exp(−β2Ej)

Z2

∣∣∣∣ , (3)

where Z1 =
∑
j exp(−β1Ej) and Z2 =

∑
j exp(−β2Ej). Using the associ-

ated energy distributions w1j = wβ1(Ej) and w2j = wβ2(Ej) the minimum
error probability equals

perror =
1

2
(1− 1

2

∑
j

|w1j − w2j|) . (4)

Measurement in energy basis is optimal
Let us now consider that the measurement performed is the energy mea-
surement, i.e. outcomes Ej associated with projectors Πj, hence, wxj =
tr[%xΠj] = (1/Zx) exp(−βxEj). Inserting these numbers into the above
formula we observe that the obtained expression coincides with the opti-
mal value for minimum error discrimination of two thermal states.

Case study: qubit
The general Hamiltonian has the form H = aI + ~α ·~σ. Let us introduce the
quantity α = ||~α|| > 0 and operator S = ~α · ~σ = |ϕ+〉〈ϕ+| − |ϕ−〉〈ϕ−|,
where |ϕ±〉 are eigenvectors of H and S. The eigenvalues of H = aI +αS
reads E± = a± α, thus, we obtain energies E0 = E− for the ground state
and E1 = E+ for the excited one. Direct calculation gives

perror =
1

2

(
1− 1

2

| sinhα(β1 − β2)|
cosh(β1α) cosh(β2α)

)
. (5)

Π0 =
1

2
(I − S) = |ϕ−〉〈ϕ−| (6)

Π1 =
1

2
(I + S) = |ϕ+〉〈ϕ+|

Further, without loss of generality we may assume β1 > β2 (i.e. T1 < T2).
Then

w10 = tr[%1Π0] =
eβ1α

Z1
>
eβ2α

Z2
= tr[%2Π0] = w20

w11 = tr[%1Π1] =
e−β1α

Z1
<
e−β2α

Z2
= tr[%2Π1] = w21 ,

where Zj = 2 cosh βjα. Therefore, if the ground energy is recorded we
conclude the smaller of the temperatures (T1), whereas, if excited energy is
observed, then the state of the larger temperature (T2) is identified.

Figure 1: 3D plot of probability of error between two satets %1 and %2 in terms of T1 and
T2 in the presence of same Hamiltonian H = σz.

Dependence on the difference of temperatures

Figure 2: Probability of error for fixed values of ∆T = 0.5 (Red line),∆T = 1 (Blue
Line) and ∆T = 5 (Green Line). All plots are depicted for α = 0.5.

Qudits: Finite dimensional linear harmonic oscillator

H = E0III + α

d−1∑
j=1

j|j〉〈j|. (7)

q0 = lim
T1→0

||%1 − %2|| , q∞ = lim
T1→∞

||%1 − %2|| (8)

If q∞ ≥ q0, then T2 is best discriminated with temperatures T1 from the
area of very low temperatures. Otherwise, T2 is best discriminated with
higher temperatures T1. The identity q0 = q∞ identifies the critical value
of temperature T ∗ determining whether the minimum of error probability
of distinguishing T2 and T1 is achieved for larger, or small temperatures T1.

The condition q0 = q∞ implies

d− 1

d + 1
=

d−1∑
j=1

exp (−jα
T ∗

) =
exp(− α

T ∗)− exp (−NαT ∗ )

1− exp(− α
T ∗)

. (9)

Figure 3: Critical Temperatures for different dimensions for fixed α = 5.

For the simplest cases we can evaluate the values also analytically

T ∗ =
α

ln(3)
for d = 2

T ∗ = − α

ln( 2√
3−1

)
for d = 3. (10)

2 Case of multiple temperatures
Theorem 1. Consider a set of mutually commuting states %1, . . . , %N with
apriori probabilities η1, . . . , ηN . Let us denote by Πk the eigenprojectors
of %j, thus, %j =

∑
k wjkΠk for all j and wjk = tr[%jΠk]. Define the in-

dex set Ij composed of indexes k for which ηjtr[%jΠk] is maximized by %j.
Then the optimal minimum-error discrimination measurement is composed
of projectors Fj =

∑
k∈Ij Πk identifying the conclusion %j. The probability

of success equals

psuccess =
∑
k

tr[Πk] max{tr[η1%1Πk], . . . , tr[ηN%NΠk]} .

Qubits

%j =
eαβjΠ0 + e−αβjΠ1

2 cosh[αβj]
. (11)

Discrimination of N thermal states of qubits concludes with nonzero prob-
ability only the states with minimal and maximal temperatures, i.e.

perror = 1− 1

N
(tr[%1Π0] + tr[%NΠ1])

= 1− 1

N
(tr[(%1 − %N )Π0] + 1)

=
N − 1

N
+

1

2N

(
sinhα(β1 − βN )

coshαβ1 coshαβN

)
(12)

Temperature threshold
consider the source is producing one of increasingly-ordered thermal states
%1, . . . , %N , the goal is decide only whether the temperature is above, or be-
low some specified (threshold) value Tc. Assuming all the states are equally
likely we may introduce density operators

%− =
1

N−

∑
j∈S−

%j, %+ =
1

N+

∑
j∈S+

%j ,

where N− + N+ = N and N± labels the number of thermal states below
and above the specified temperature, respectively. The discrimination prob-
lem is reduced to discrimination of these averages of thermal states apriori
distributed as q± = N±/N . The state %± are themselves not thermal states
(except of the qubit case), however, they are still commuting and diagonal
in the energy basis. Consider the case of qubit states.

%± =
1

2
(I − tanh(

α

T±
)σz) , (13)

T± =
1

α
tanh−1

(∑
j∈S± tanh( αTj

)

N±

)
. (14)

The optimal measurement (Theorem 1) consists of projectors onto eigen-
vectors of the Hamiltonian

π1 = |1〉〈1| ,
π2 = |0〉〈0| . (15)

The conclusion made (above/below threshhold), when the outcome πj is
registered, follows from the comparison of values q±tr(%±πj).

3 Thermal States with different Hamiltonians
and fixed temperature

perror =
1

2
(1− 1√

2
| tanh(

B

T
)|
√

1−~b1 ·~b2) . (16)

Expressing ~vj via ~bj and assuming, for simplicity, that η1 = η2 = 1/2 it

follows π± = 1
2(I ± ~b1−~b2

||~b1−~b2||
· ~σ). As a result we see that optimal measure-

ment is measuring the spin along the direction ~b1 − ~b2. Moreover, let us
stress it is independent of the temperature T and also of the strength of the
magnetic field B.

Conclusions

• The measurement in energy basis is the optimal one for discrimination
of pairs of thermal states with the same Hamiltonian.

• Finding the critical temperature T∗ such that by comparing a temperature
T with T∗ one can find if it can be better discriminated with higher or
lower temperature.

• Generalizing some of the results to the case of a d dimensional Hamil-
tonian and formulation the optimal discrimination for a general set of
mutually commuting states.

• Identification problem for deciding whether the temperature of thermal
states is above, or below some threshold value of the temperature Tc.

• Extension to non-commutative case: For unitarily related and fixed tem-
perature, the optimal discrimination measurement is independent of the
(fixed) temperature and the interaction strength.
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