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Abstract
Recently, it has been shown that a limited set of state transformation is realisable via
Gaussian thermal operations, especially in the single-mode case. Here, we look at whether
introducing catalysts can help us to achieve more state-transformation. We particularly
consider two different catalytic scenarios: with or without correlation between the system
and the catalyst at the end.

Gaussian Thermal Operations (GTO)
Gaussian thermal operations are the class of Gaussian operations on a continuous
variable system obtained by energy-preserving interaction Hamiltonians between the
system and a thermal bath.

The authors in [1] also fully characterised single-mode GTOs; derived both necessary and
sufficient conditions for state transformation under single-mode GTOs.
The above theorem implies that non-trivial state transformations happen within

degenerate modes. What kind of thermodynamically interesting transformations is
allowed in multi-mode degenerate systems?

Catalytic Gaussian Thermal Operations
As a special case of multi-mode GTOs, we look at catalytic Gaussian thermal operations.
We consider two different catalytic scenarios; strong catalysts and weak catalysts.
1. Strong catalysts: the catalytic mode needs to be uncorrelated from the system at the

end.
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2. Weak catalysts: the catalytic mode can be correlated to the system at the end.
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Single-mode case: a single-mode system and a single-mode catalyst

Theorem (in [1]). (Characterisation of GTOs) Let 𝐻' be a system Hamiltonian with normal form
𝑆()𝐻' 𝑆$ () =⊕* 𝜔*𝕀+,! where 𝑛* is the mode degeneracy of the eigenfrequency 𝜔*. The class
of GTOs at background inverse temperature 𝛽 act on the system covariance matrix 𝜎 as
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𝑆 ⊕*𝑊* ∘ 𝛷* ∘ 𝑍*[𝑆()𝜎 𝑆$ ()] 𝑆$,
where (i) 𝑊* and 𝑍* are passive linear transformations, and (ii) Φ* is a CP maps realisable by
adding an ancilla bath mode, applying a passive linear transformation to the system and the bath
modes, and tracing out the bath mode.

Technical ingredient: Normal form
In this work, we largely make use of normal form [2], which is a useful decomposition
of the covariance matrix. We decompose the 2n x 2n covariance matrix into two n x n
matrices:

𝐴-. ≔ 𝑎.
/𝑎- − 𝜈, 𝐵-. ≔ 𝑎.𝑎- ,

where 𝜈 is the variance of any quadrature in a thermal state at background inverse
temperature 𝛽. We can recover the covariance matrix from

𝑥-𝑥. = 𝑅𝑒 𝐴-. + 𝐵-. + 𝛿-.𝜈, 𝑝-𝑝. = 𝑅𝑒 𝐴-. − 𝐵-. + 𝛿-.𝜈
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𝑥-, 𝑝. = 𝐼𝑚 𝐵-. − 𝐴-. .
We characterize state in terms of eigenvalues 𝛼- - of the matrix A and the singular
values 𝛽- - of the matrix B. The two matrices are in general not simultaneously
diagonalizable, so they do not in general provide a full characterization of covariance
matrices.

When both the system and the catalyst are single-mode, the initial A and B matrices are
simultaneously diagonalizable, since the system and the catalyst must be uncorrelated in
the beginning. Thus, it is possible to fully characterize state transformations under
single-mode catalytic GTOs with 𝛼- - and 𝛽- -.
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The main question
Do such catalytic transformations allow for more possible operations to be performed on a
system?
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Characterisation of multi-mode catalytic Gaussian thermal operations


