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Abstract

These are some notes on quantum thermal states of many-body systems, prepared as support of

the lectures in the “Quantum Thermodynamics Summer School” in Les Diablerets, Switzerland,

23-27th of August 2021.
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I. INTRODUCTION

Here we will learn about some important properties of quantum many-body systems in

thermal equilibrium. That is, we focus on

ρβ =
e−βH

Z
, (1)

where H is the Hamiltonian, β is the inverse temperature and Z ≡ Tr[e−βH ] is the partition

function.

In previous lectures from this school, you may have studied properties of either small

systems of few particles, or IID/non-interacting ensembles of many particles, such as ρβ =

( e
−βH

Z
)⊗N . We now start taking into account the interaction between the many particles.

That is, we focus on a single Hamiltonian for the N particles, in which we restrict the

interactions to be short-ranged or local.

A “local Hamiltonian” is a Hermitian operator H in the Hilbert space of N d-dimensional

particles (Cd)⊗N . It is defined as a sum of terms

H =
∑
i

hi ⊗ I, (2)

each of which has bounded strength and support (i.e. acts non-trivially) on at most k

particles. In what follows we will just write the terms as hi for simplicity. These constitute

the individual interactions, which are typically arranged in a lattice of a small dimension.

A simple example is the transverse-field Ising model in one dimension with open BCs

HIs =
N−1∑
j=1

(
JσXj σ

X
j+1 + hσZj

)
+ hσZN . (3)

Here, k = 2 and the interactions are arranged on a 1D chain.

Of course this definition is very general, and involves many different models describing

a wide range of situations. The only thing they have in common is the locality of the

interactions. We thus aim to understand mathematically how does this fact alone universally

constrain the physics. There are many different specific questions one could explore. In this

note we describe two related ones, relevant for quantum thermodynamics:

• What are the correlations between the different parts of the thermal state? How are

they distributed?
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• What form do the subsystems of a thermal state take? How are they related to local

Gibbs states? How can we approximate them?

A. Some motivation

Many of the most commonly studied quantum settings and current experimental plat-

forms are described by some many-body local Hamiltonian. Their thermal states are par-

ticularly interesting for many reasons:

• It is one of the most ubiquitous states of quantum matter: typical experiments

happen at finite temperature, where your quantum system is weakly coupled to some

external radiation field that drives it to the thermal state.

• As we will also see, the thermal state is also important when studying not just systems

with an external bath, but also in the evolution of isolated quantum systems, even in

pure states: in generic cases, these end up being “their own bath”, and the individual

subsystems thermalize to the Gibbs ensemble.

• From a general condensed matter/material science standpoint, we are very interested

in numerous questions about the physics at finite temperature: How are conserved

quantities (e.g. charge, energy) propagated in a state close to equilibrium? How does

the system respond to small or large perturbations away from equilibrium?

• Thermal states display interesting phase transitions in certain (low) temperature

regimes (e.g. Ising model in 2D). It is thus interesting to study what are their universal

properties both in and away from the critical points.

• Thermal states are also important for computation. For instance, being able to

sample from the thermal distribution of local models is a typical subroutine for cer-

tain classical and quantum algorithms. Moreover, their low energy subspace is able

to encode the solution to very hard computational problems (likely even hard for a

quantum computer!), so it is interesting to study how does this “complexity” change

with temperature.

• Perhaps more excitingly: We are in the dawn of the age of synthetic quantum
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matter, where many complex quantum systems can be directly studied in experiments

e.g. cold atoms or superconducting qubits.

II. MATHEMATICAL PRELIMINARIES

A. Operator norms

A basic but very important mathematical tool in this context are the Schatten p-norms

for operators, as well as the different inequalities between them. These norms are maps from

the space of operators to R, as M → ||M ||p, that obey the usual properties

• Homogeneous: If α is a scalar, ||αM ||p = |α|||M ||p

• Positive: ||M ||p ≥ 0

• Definite: ||M ||p = 0 ⇐⇒ M = 0.

• Triangle inequality: ||M +N ||p ≤ ||M ||p + ||N ||p.

For a given operator M with singular values {λMl } and p ∈ [1,∞], they are defined as

||M ||p ≡ Tr[|M |p]
1
p =

(∑
l

(λMl )p

) 1
p

. (4)

The more important ones are the operator norm ||M ||∞ = maxl λ
M
l , the Hilbert-Schmidt

2-norm ||M ||2 = Tr[MM †]1/2 and the 1-norm or trace norm

||M ||1 = max
||N ||≤1

Tr[MN ]. (5)

Thus |Tr[M ]| ≤ ||M ||1, with equality for positive operators (for states Tr[ρ] = ||ρ||1 = 1).

Typically we measure the “strength” of an observable with the operator norm, and the

closeness of two quantum states with the trace norm ||ρ − σ||1, since it is related with the

probability of distinguishing them under measurements. The 2-norm, on the other hand, is

often the easiest one to compute. Also note the very important Hölder’s inequality

||MN ||p ≤ ||M ||q1||N ||q2 , (6)

which holds for 1
p

= 1
q1

+ 1
q2

(e.g. p = q1 = 1, q2 =∞). A particularly useful corollary of this

result is the Cauchy-Schwarz inequality (Q: Can you see how it follows from Eq. (6)?)

|Tr[M †N ]|2 ≤ Tr[MM †]Tr[NN †]. (7)
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B. Information-theoretic quantities

Let us also define the von Neumann entropy for a state ρ

S(ρ) = −Tr[ρ log(ρ)], (8)

as well as the Umegaki relative entropy

D(ρ|σ) = Tr[ρ(log ρ− log σ)], (9)

which, as the trace norm, is a measure of distinguishability of quantum states. It obeys

Pinsker’s inequality D(ρ|σ) ≥ 1
2
||ρ− σ||21.

From these, we can also define the quantum mutual information, which, given a bipartite

state ρAB with TrB[ρAB] = ρA,TrA[ρAB] = ρB, quantifies the correlations between A and B

I(A : B)ρ = S(ρA) + S(ρB)− S(ρAB = D(ρAB)|ρA ⊗ ρB). (10)

III. CORRELATIONS

One of the more important questions when studying many body systems is: how and

how much are the different parts correlated? Intuitively, the stronger these correlations, and

the longer their range, the more complex a state is. However, for thermal states, we can

expect that the locality of the interactions will constraint the complexity. More specifically,

it will cause the correlations to be “localized”, meaning that particles are only correlated

with their vicinity. For a first intuition, consider

e−βH = I− β
∑
i

hi +
β2

2

∑
i,j

hihj + ... (11)

That is, at very high temperatures we approach the trivial uncorrelated state ∝ I and the

leading order term includes only k-local couplings, with only higher order terms coupling far

away particles. We thus expect that the correlations between particles will be weaker i) the

higher the temperature and ii) the larger their distance on the interaction graph. There are

many reasons to study this, but a perhaps particularly important one is that the localization

of correlations is related to the existence and efficiency of tensor network algorithms [1].

Below we describe (and even prove) some ways in which these correlations are constrained.
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A. Correlations between neightbouring regions: Thermal area law

We now prove a well known statement: the area law for thermal states (see [2] for the

original reference). Let us partition our interaction graph into two subsets of particles A,B,

with a thermal state ρABβ . The proof starts with the very simple thermodynamic observation

that the free energy F of the thermal state is lower than that of any other state, and in

particular

F (ρABβ ) ≤ F (ρAβ ⊗ ρBβ ). (12)

Writing out the free energy explicitly as F (ρ) = Tr[ρH]− β−1S(ρ) and rearranging yields

S(ρABβ )− S(ρAβ ⊗ ρBβ ) ≤ β
(
Tr[HρAβ ⊗ ρBβ ]− Tr[HρABβ ]

)
. (13)

Given that the entropy is additive S(ρ ⊗ σ) = S(ρ) + S(σ) notice that the LHS is exactly

the mutual information I(A : B)ρABβ from Eq. (10). Now, since our Hamiltonian is local, we

can write it as

H = HA +HB +HI , (14)

where HA, HB have support on A,B respectively, and HI is the interaction between them

(with support on both). By definition, the expectation values of HA and HB coincide on

both states Tr[(HA +HB)ρAβ ⊗ ρBβ ] = Tr[(HA +HB)ρABβ ], so that

β
(
Tr[HρAβ ⊗ ρBβ ]− Tr[HρABβ ]

)
= β

(
Tr[HIρ

A
β ⊗ ρBβ ]− Tr[HIρ

AB
β ]
)
. (15)

Now we can use a few of the operator inequalities from Section II A to obtain

Tr[HIρ
A
β ⊗ ρBβ ]− Tr[HIρ

AB
β ] ≤ ||HI(ρ

A
β ⊗ ρBβ − ρABβ )||1 (16)

≤ ||HI || × ||ρAβ ⊗ ρBβ − ρABβ ||1 (17)

≤ ||HI || × (||ρAβ ⊗ ρBβ ||1 + ||ρABβ ||1) = 2||HI || (18)

Putting all together we have the final result

I(A : B)ρABβ ≤ 2β||HI ||. (19)

This is an area law for the mutual information of a thermal state: it says that the

strength of the correlations of systems A,B does not depend on their size, but on their

common boundary. For a local Hamiltonian, we have that

||HI || ≤ 2k|∂AB| ×max
i
||hi||, (20)
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where |∂AB| is the number of particles at the boundary of regions A,B, as defined by the

interaction graph. Schematically:

.

This is to be contrasted with the most general upper bound on the mutual information,

which is I(A : B) ≤ min{log(dA), log(dB)} (since log dA ∝ |A| this is a volume law instead).

What this suggests is that the correlations between A and B are localized around the

mutual boundary, and that the bulks of A and B are mostly uncorrelated. That is, the only

relevant information about A that B contains is about the region near the boundary.

Although this is by far the simplest, there are other versions of the thermal area law

in the literature: with different temperature dependence [3] and for different measures of

correlations [4, 5]. An important comment is that since they are upper bounds for all general

models, they might not be tight in some cases. In fact, many physical models have a very

different temperature dependence [6].

B. Long-range correlations: exponential decay

The fact that correlations between distant regions are very weak can be expressed in a

different manner. Let C,D be regions such that their distance is dist(C,D). We now look

at the marginals on these regions Tr\(CD)[ρβ] = ρCDβ and its correlations. We expect that in

general

I(C : D)ρCDβ ≤ f (dist(C,D)) , (21)

where f is some rapidly decaying function. In fact, in the following cases

• For any k-local interaction graph above a threshold temperature β < β∗, where β∗

depends on parameters of the Hamiltonian (but not on its size) [3, 7].
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• For 1D systems at all temperatures [8].

it can be shown that f(l) ≤ K|∂C ||∂D|e−l/ξ, where K > 0 is some constant, ∂C,D is the size

of the boundary and ξ is the thermal correlation length that depends on the temperature

and other parameters, but not on l or system size. The proofs are relatively involved, so we

refer the reader to the original references.

A more common but weaker condition is the decay of correlators (Q: can you see why

this is weaker? Hint: use Pinsker’s inequality and Eq. (10)). This usually takes the form

|Tr[ρβMC ⊗ND]− Tr[ρβMC ]Tr[ρβND]| ≤ Ke−dist(C,D)/ξ, (22)

where here MC and ND have support on regions C,D, respectively.

This general property of correlation decay has been shown to be equivalent to the analitic-

ity of the partition function [9]. Both in turn are related with the absence of phase thermal

phase transitions (since it implies no long-range order): at them, the correlation function

diverges and the partition function becomes non-analytic. There are known phase transi-

tions at finite temperature (e.g. 2D Ising model), so the exponential decay does not hold

for all thermal states at all temperatures.

This decay of correlations has as a wealth of physical consequences: it is associated

with the phenomenon of equivalence of ensembles [10], with the validity of the central limit

theorem and related results in thermal states [11], or even with some weak versions of the

eigenstate thermalization hypothesis [12].

C. A refined correlation decay: Conditional mutual information

A significantly stronger known result about correlations in thermal states is the property

of being an approximate quantum Markov state [13]. For this property, we need to consider

three regions A,B,C such that B shields A from C, as
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C

A

B

.

We then define the conditional mutual information

I(A : C|B) =S(ρABβ ) + S(ρBCβ )− S(ρABCβ )− S(ρBβ ) (23)

=I(A : BC)ρβ − I(A : B)ρβ . (24)

This is a central quantity in quantum information theory, behind many non-trivial state-

ments in quantum communication, cryptography and other fields (see Section 11.7 in [14] for

more details). In a nutshell, it measures how much A and C share correlations that are not

mediated by B. In other words: If this quantity is small, most of the correlations between

A and C (which may be weak) are in reality correlations between A and B and B and C.

We thus expect that it becomes small as the size of B grows, and A,C are further apart.

This is perhaps the strongest sense in which correlations can be localized, as for instance

the decay of the mutual information follows by choosing B = ∅ to be the empty set.

The following two results are known

• In one dimension [15], I(A : C|B) ≤ c1|B|e−c2
√
|B|

• In larger dimensions, and at high temperatures [16] β ≤ β∗,

I(A : C|B) ≤ k1 min{|∂A|, |∂C|}
(
β

β∗

)−k2×dist(A,C)

That is, it is known to decay (almost) exponentially in the distance between the two regions.

The significance of this, as well as the proofs involving it, are more technically involved

and require some further quantum information tools (in particular, the idea of the Petz map

[17]). Let us just briefly mention, however, that this is the only property that guarantees
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that the state on A,B,C can be reconstructed from ρAB by acting locally on B, such that

IA ⊗RB→BC(ρAB) ' ρABC , with RB→BC some CP map taking only B as input.

IV. LOCALITY OF TEMPERATURE

We have been looking at correlations between different parts. Now, we instead focus on

what happens with individual subsystems. If the particles are non-interacting, it trivially

holds that the marginal on A is the thermal state of HA, Tr\A[ρ] = e−βHA
ZA

(we now drop the

subscript β for simplicity of notation). The question is: how is this statement changed when

we introduce local (and strong) interactions? Can we identify the state of a subsystem with

some thermal state? How different is it from e−βHA
ZA

? This general question sometimes goes

under the name of locality of temperature [7].

There are (to my knowledge) two complementary answers to this: the idea of local indis-

tinguishability and also the notion of Hamiltonian of mean force. We will give a proof of the

simplest instance of the first (in 1D), and briefly explain the second. Both statements seem

to be relevant in the study of quantum thermodynamics of lattice models [18, 19].

A. A proof of local indistinguishability in one dimension

We now prove a statement about how to approximate the marginal of a thermal state

on a small region, with a slightly larger region. It shares some steps and ideas that appear

in other more fundamental questions including, for instance, the proof of the absence of

phase transitions in 1D [9, 20] or of decay of correlations [8, 20]. We believe this makes it

particularly suited for introductory notes like these.

Let us focus on the restricted setting of a chain, that we divide into three parts A,B,C,

such that B is in the middle and A is a small subsystem at the end of the chain, as

C B A
…..

.

The Hamiltonian can be written as

H = HA +HAB +HB +HBC +HC
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. We have the full thermal state ρ, as well as a thermal state supported on A,B defined as

ρAB0 =
e−βHA+HB+HAB

ZAB
, (25)

that is, without the terms in H that have support in C (note that C may comprise most

of the chain). One can also think of this as the marginal of the thermal state ρAB0 ⊗ ρC0 ≡

e−β(HAB+HC)/ZABZC in which we have removed the interactions HBC between AB and C.

Notice that ρAB0 6= ρAB due to the presence of HBC (which is just a small local term).

We now show that if B is large enough, these two states are indistinguishable on A: we aim

for a small upper bound on

||TrBC [ρ]− TrB[ρAB0 ]||1 = max
||OA||≤1

|Tr[OA(ρ− ρAB0 ⊗ ρC0 )]|, (26)

where OA has support on A only, and the equality comes from the definition of the 1-norm.

Now, let us define the following two operators

• EBC = eβHe−β(H−HBC),

• El
BC = eβ(Hl

C+Hl
B+HBC)e−β(Hl

B+Hl
C), where H l

B and H l
C are the terms of HB and HC

that are a distance at least l from the boundary terms HBC .

The second one El
BC is the same as EBC but restricting the terms that appear in the

exponents to be in the vicinity of HBC . The parameter l is free and we can choose to our

convenience.

A very important and fundamental result by Araki [20] (see also Appendix A of [15]) shows

that there exists constants C1, C2 and q depending on β, J and ||HBC || (but importantly,

not on the size of any subsystem) such that

• ||EBC || ≤ C1

• ||EBC − El
BC || ≤ C2

q1+l

(1+l)!

That is, the operator EBC has bounded norm and, since we can approximate it by El
BC

with e.g. some l < dist(A,C), its support on region A is super-exponentially suppressed in l

(due to the factorial, which always dominates over ql). In what follows, we choose l = |B|/2.

Notice that by definition ρAB0 ⊗ ρC0 = Z
ZABZC

ρEBC .
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With the triangle inequality we can write

|Tr[OA(ρ− ρAB0 ⊗ ρC0 )]| ≤
∣∣∣∣Tr[OA(ρ− Z

ZABZC
ρEl

BC)]

∣∣∣∣+

∣∣∣∣Tr[OA(
Z

ZABZC
ρEl

BC − ρAB0 ⊗ ρC0 )]

∣∣∣∣ .
(27)

Let us now upper-bound these two terms independently. The second can be bounded with

Araki’s result and Hölder’s inequality applied twice.∣∣∣∣Tr[OA
Z

ZABZC
ρEl

BC − ρAB0 ⊗ ρC0 )]

∣∣∣∣ =

∣∣∣∣Tr[OA
Z

ZABZC
ρ(El

BC − EBC)]

∣∣∣∣ (28)

≤ Z

ZABZC
||OA||||ρ||1||El

BC − EBC || (29)

≤ Z

ZABZC
× C2

q1+l

(1 + l)!
. (30)

Since max{ Z
ZABZC

, ZABZC
Z
} ≤ eβ||HBC || (Note: showing this is part of the problem sets),

which is a constant that only depends on β, k, J , we find that the second term is super-

exponentially suppressed.

For the first term, we require the decay of correlations property from the previous section

(which, as explained above, always holds in 1D). By Eq. (22) and since l = |B|/2,∣∣Tr[OAρE
l
BC ]− Tr[OAρ]Tr[ρEl

BC ]
∣∣ ≤ Ke−

|B|
2ξ ||El

BC || ≤ 2KC1e
− |B|

2ξ , (31)

where for the last inequality we used ||El
BC || ≤ ||EBC ||+ ||El

BC −EBC || ≤ 2C1, which holds

for sufficiently large l. We can now write∣∣∣∣Tr[OA(ρ− Z

ZABZC
ρ)El

BC ]

∣∣∣∣ ≤ ∣∣∣∣Tr[OAρ]− Z

ZABZC
Tr[OAρ]Tr[ρEl

BC ]

∣∣∣∣+ 2KC1e
− |B|

2ξ (32)

≤
(

1− Z

ZABZC
Tr[ρEl

BC ]

)
+ 2KC1e

− |B|
2ξ , (33)

where we used the triangle inequality in the first line, and Hölder’s inequality Tr[OAρ] ≤

||OA|| ≤ 1 to get to the second. Finally, we can use Araki’s result again after another

application of (you guessed it!) Hölder’s inequality

|Tr[ρEl
BC ]− Tr[ρEBC ]| ≤ ||EBC − El

BC || ≤ C2
q1+l

(1 + l)!
, (34)

and since Tr[ρEBC ] = Z
ZABZC

≤ eβ||HBC || we obtain∣∣∣∣Tr[OA(ρ− Z

ZABZC
ρEl

BC)]

∣∣∣∣ ≤ C2e
β||HBC || q1+l

(1 + l)!
+ 2KC1e

− |B|
2ξ . (35)
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This finishes the proof. Putting everything together, we see that we have upper-bounded

our target quantity in Eq. (26) by a small number related to the error term in the decay

of correlations and Araki’s result. Without worrying about the constants, and just on the

leading exponential error, we can write the final result

||TrBC [ρ]− TrB[ρAB0 ]||1 ≤ e−Ω(|B|), (36)

where Ω(x) is big-O notation for a function that grows at least as fast as x.

Here, for simplicity, we have only dealt with the simplest case of a 1D chain, where A is

at the end of it. This proof, however, extends to more general situations [7, 21], provided

that the decay of correlations property and some version of the Araki result hold (in fact, a

different trick called quantum belief propagation [22] also suffices).

This means that the marginals of large thermal states do not depend much on what

happens far away, and are very well approximated by the marginal of a much smaller thermal

state (as long as |B| is large enough). A straightforward consequence is that we do not need

to know the whole state to compute local quantities. If we care about some kind of local

order parameter, or want to compute heat flows between of some part and its surroundings,

we can calculate this without having to diagonalize a huge matrix. This type of statement

has implications for quantum algorithms for thermal states [21] and for tensor network

representations [23]

B. Hamiltonian of mean force

We have seen that the marginal on A is close to the marginal of a smaller thermal state

of the same Hamiltonian. However, can we also say that the marginal on A is the thermal

state of some Hamiltonian on A only? This is obviously the case, since we can define

H̃A ≡ β−1 log Tr\A[e−βH ]. (37)

This is the so-called Hamiltonian of mean force [18]. The important question is: how does

this compare to the “bare” Hamiltonian HA, which disregards the interactions of A with the

rest of the system? In other words, we would like to understand the operator ΦA ≡ H̃A−HA.

This turns out to be a difficult problem, which is related to the quantum Markov property

and the decay of the conditional mutual information from Sec. III C. We now briefly describe
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a known result for high temperatures from [16], whose proof involves a very interesting (but

also fairly involved) technique called the linked cluster expansion.

Since the interactions are local, it makes sense that, if the size of A is much larger than

the interaction length k, most of the weight of ΦA is localized around its boundary with

the rest of the system, of size |∂A|. A way to phrase this is: can we approximate ΦA with

another operator Φl
A that only has support on sites a distance l away from the boundary?

Theorem 2 in [16] shows that, for any temperature β above a threshold one β∗ > 0, one can

define a Φl
A such that

||ΦA − Φl
A|| ≤

e

4β

(β/β∗)l/k

1− β
β∗

|∂A|. (38)

That is, ΦA can be exponentially well approximated with an operator localized around the

boundary. This may be useful in analyzing quantities like heat and work in thermody-

namic cycles within this strongly coupled regime. See below for an illustration: Φl
A will be

supported in the light orange region only.

𝝏𝑨

𝑨
𝑙

.

V. FURTHER TECHNICAL TOOLS AND RESULTS

It appears at first that studying thermal states of general complex quantum models is a

very challenging task in general. Hopefully here we have illustrated that this is not always

the case, and that some non-trivial analytical statements can be made.

There is by now a fairly established list of techniques to study these problems, most of

which deal with different simplifications of the matrix exponential of a local operator eH
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in different forms. We now provide a list of some of the more important ones that have

appeared in the literature with a (very) rough description, with some of the references in

which they appear.

• The result of Araki used above [20, 24], and higher dimensional extensions [25–29].

These deal with the norm and the locality of operators like e−βHeβ(H+V ), as well as

the “Euclidean time” Lieb-Robinson bound regarding operators such as e−βHV eβH .

• The Trotter decomposition, dealing with approximations of the form eH1+H2 ∼ eH1eH2

[30, 31].

• The quantum belief propagation technique [15, 22] related to Araki’s result. It shows

that there is an operator ΦV of bounded norm and quasilocal such that e−β(H+V ) =

ΦV e
−βHΦ†V .

• The linked cluster expansion [7, 16, 32–34], which studies the individual terms of the

Taylor expansion of e−βH as a sum of products of local terms (the “clusters”). It only

converges above a threshold temperature β∗.

• Further polynomial approximations to the matrix exponential [3, 35].

Some of the most important of these only work well either in one dimension or at high

temperatures. This is not a coincidence: we do not expect they will work at all temperatures,

due to the presence of thermal phase transitions (such as the one of the classical 2D Ising

model). It is an outstanding challenge to find alternative techniques to e.g. the cluster

expansion that can be used in higher dimensions and low temperatures.

Let us conclude with some of the related questions in which recent progress has been made.

Currently the study of many-body thermal states from a mathematical and information

theoretic perspective is fairly active. Beyond those already mentioned, some interesting

current topics are

• Classical simulation of thermal states [9], including tensor network approximations

[3, 7, 23, 30, 36].

• Quantum simulation of thermal states [21, 37–40].

• Quantum algorithms for optimization problems, involving thermal sampling [41–43].
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• Learning of quantum thermal states from local measurements [34, 44, 45].

This is list and the citations in it are very far from complete. Suggestions are very welcome!
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