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Motivation

Presently, quantum computers rely on low temperatures to preserve coherence, and theirmemory

is limited. Most current quantum algorithms are implemented through unitary circuits, and some

registers are measured at the end. Eventually all registers must be erased (that is, reset to |0〉),
so they are ready for the next computation. A naïve erasure of these registers costs work and

dissipates heat to the quantum computer’s environment, due to Landauer’s principle [4]. To avoid

this, there are proposals for efficient erasure of quantum registers [1, 8, Fig. 8]; these usually

involve reversing parts of the original circuit. Herewe go one step further and investigatewhether

there is an advantage in making use of the entanglement between different registers in the middle

of a quantum algorithm to erase ancillas as they stop being useful — we call this online erasure.

Erasure with a quantummemory

This idea is an application of [6], which generalizes Landauer’s principle: if we want to erase a

quantum register or system S, while preserving a quantum memory M , by acting on SM and a

thermal environment at temperature T , that is ρSM
E−−→ |0〉〈0|S ⊗ ρM , then an optimal process E

will on average dissipate heat

Q = H(S|M)kBT ln 2

to the environment, where kB is the Boltzmann constant, and H(S|M) the conditional von Neu-
mann entropy.

Model: battery and computation registers

We take a simplified model for a quantum computer whose memory is split into two or registers:

the computation zone, where algorithms are implemented, and a battery zone that stores erased

qubits in state |0〉 (the “good” qubits) and some mixed qubits (“bad” qubits). The idea is to shift
the thermodynamic process of erasure to the battery: there, fully mixed qubits can be brought to

a pure state at a fixed work/heat cost, for example through the procedure in [7]. To erase a qubit

in the computation zone, we simply swap it with a good one from the battery, and the work cost

of a computation can be quantified by the number of good qubits from the battery used (Fig. 1).
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Figure 1. Here, QG is the quantum Fourier transform for group G and Of is the function oracle,

Of |x〉|y〉 = |x〉|f (x) ⊕ y〉. Naïvely, one would erase the ancillas by swapping them with the battery register. We
have n = log2 |G|, m = log2 |S| qubits for G and S respectively. The dashed line indicates the position of online

erasure in the modified versions ahead.

Algorithm

We focus on erasing the ancillary output register S of the algorithm after the oracle is applied

(dashed line in Fig. 1). We want to preserve the state of the “memory” input register G (named

after the input group). Their joint state at this point is denoted by ρGS. First, local unitaries UG

and US compress the correlations between the two registers into Bell pairs, bringing the state to

a product of Bell pairs between subsystems of S and G and some leftover state:

ρGS
UG⊗US−−−−−−→ ρ̃G1S1 ⊗

(
|χ〉〈χ|⊗`

)
G2S2

,

where G = G1 ⊗G2, S = S1 ⊗S2, each Bell pair |χ〉 is formed by a qubit from G2 and one from S2,

and ` = log2 |G2| = log2 |S2|. These ` Bell pairs are swapped with fully mixed states (1/2)⊗2` from

the battery (i.e. “bad qubits”). This reduces the entropy of the battery by 2`. Then, unitary UG

on G is undone, leaving the reduced state of G unchanged, respecting our memory preservation

condition, so algorithm still solves the HSP. Finally, S is erased by swapping it with good qubits

from the battery (Fig. 2).
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Figure 2. The last two registers are batteries (“bad” and “good”). The map Ξ (violet box) swaps the entangled
qubits from G2 ⊗ S2 with mixed states from the first battery.

Cost analysis

The naïve procedurewould have cost log2 |S| clean qubits from the battery; in contrast, the overall
cost of our proposed procedure is log2 |S| − 2` clean qubits. Here ` is in principle upper-bounded

by the conditional entropy |H(S|G)| = log2 |G/H| =: `max. However, the number of Bell pairs

we can actually extract depends on our information about the function f (or alternatively some

properties of the hidden subgroup H). Indeed, we can show that finding the unitaries US and

UG that extract `max Bell pairs corresponds to solving the HSP itself. Therefore, the cases of

interest are those with 0 < ` < `max, where we can find appropriate unitaries if we have partial

information on H . For example, one could know an intermediate subgroup, H ⊆ K ⊆ G, giving

us the factorization G = (G/K) ⊗ K .

Oracle simplification

We propose an alternative algorithm for the cases whenwe have open circuit access to the oracle

(as opposed to black box access). This holds, for example, for order finding, a simple special case

of the HSP. From the previous modifications we have a unitary UG that factors G = G/K ⊗
K , together with a unitary US for factoring S. Reordering these operations around the oracle

according to Fig. 3 gives a modified oracle Õf which can solve the HSP with 2` variable qubits

less than Of .
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Figure 3. The modified oracle Õf replaces Of . The lowercase letters indicate the number of qubits.
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