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Summary

• We investigate quantum correlations in time in different approaches. We assume that temporal correlations should be treated in an even-handed manner with spatial correlations.
We compare the pseudo-density matrix formalism with several other approaches: indefinite causal structures, consistent histories, generalised quantum games, out-of-time-order correla-
tions(OTOCs), and path integrals. We establish close relationships among these space-time approaches in non-relativistic quantum theory, resulting in a unified picture. With the exception
of amplitude-weighted correlations in the path integral formalism, in a given experiment, temporal correlations in the different approaches are operationally equivalent.

Figure Representation

Pseudo-Density Matrix (PDM) Formulation

• A density matrix could be expressed as

ρ =
1

2n

3∑
i1=0

...

3∑
in=0

⟨
n⊗

j=1

σij⟩
n⊗

j=1

σij. (1)

• Consider a set of events {E1, ..., EN}. At each event Ej, a measurement of a single
qubit Pauli operator σij ∈ {σ0, ..., σ3} is made. For a particular choice of Pauli operators
{σij}nj=1, ⟨{σij}nj=1⟩is defined as the expectation value of the product of the result of these
measurements.
• The pseudo-density matrix is defined as

R =
1

2n

3∑
i1=0

...

3∑
in=0

⟨{σij}nj=1⟩
n⊗

j=1

σij. (2)

Process Matrix (PM): Indefinite Causal Structures

• Consider a global past P and a global future F . A process is defined as a linear
transformation take two CPTP maps A : AI⊗A′

I → AO⊗A′
O and B : BI⊗B′

I → BO⊗B′
O

to a CPTP map GA,B : A′
I ⊗ B′

I ⊗ P → A′
O ⊗ B′

O ⊗ F without acting on A′
I, A

′
O, B′

I,
B′

O. Specifically, it is a transformation that act on P ⊗ AI ⊗ AO ⊗BI ⊗BO ⊗ F .
• We introduce the Choi-Jamio lkowski isomorphism to represent the process in the ma-
trix formalism. Recall that for a completely positive map MA : AI → AO, its correspond-
ing Choi-Jamio lkowski matrix is given as C(M) ≡ [I ⊗MA(|11|)] ∈ AI ⊗AO with I as
the identity map and |1 = |1AIAI ≡

∑
j |j⟩

AI ⊗ |j⟩AI ∈ HAI ⊗HAI is the non-normalised

maximally entangled state. The inverse is given as M(ρAI) = Tr[(ρAI⊗1AO)MAIAO] where
1AO is the identity matrix on HAO.
• Then A = C(A), B = C(B), and GA,B = C(GA,B) are the corresponding CJ represen-
tations. We have

GA,B = TrAIAOBIBO
[W TAIAOBIBO(A⊗B)], (3)

where the process matrix is defined as W ∈ P ⊗AI⊗AO⊗BI⊗BO⊗F , TAIAOBIBO
is the

partial transposition on the subsystems AI, AO, BI, BO, and we leave identity matrices
on the rest subsystems implicit.
• Correlation Analysis Consider a single qubit ρ evolving under U . The correlations
from the process matrix are given by

p(ΣAIAO

i ,ΣBIBO

j ) = Tr[(ΣAIAO

i ⊗ ΣBIBO

j )W ] =
1

2
Tr[σjUσiU

†], (4)

while the correlations from the pseudo-density matrix are given as

⟨{σi, σj}⟩ =
1

2

(
Tr[σjUσiρU

†] + Tr[σjUρσiU
†]
)

=
1

2
Tr[σjUσiU

†]. (5)

Consistent Histories (CH)

• Suppose that the system is in the state ρ at the initial time t0. Consider a set of
histories [α] = [α1, α2, · · · , αn] consisting of n projections {P k

αk
(tk)}nk=1 at times t1 < t2 <

· · · < tn.zzThen the decoherence functional is defined as

D([α], [α′]) = Tr[P n
αn

(tn) · · ·P 1
α1

(t1)ρP
1
α′
1
(t1) · · ·P n

α′
n
(tn)], (6)

where
P k
αk

(tk) = ei(tk−t0)HP k
αk
e−i(tk−t0)H. (7)

• Consider an n-qubit pseudo-density matrix as a single qubit evolving at n times. For
each event, we make a single-qubit Pauli measurement σik at the time tk. We can separate
the measurement σik into two projection operators P+1

ik
= 1

2(I +σik) and P−1
ik

= 1
2(I −σik)

with its outcomes ±1. A pseudo-density matrix is built upon measurement correlations
⟨{σik}nk=1⟩. Theses correlations can be given in terms of decoherence functionals as

⟨{σik}nk=1⟩ =
∑

α1,...,αn

α1 · · ·αn Tr[P αn

in
Un−1 · · ·U1P

α1

i1
ρP α1

i1
U †

1 · · ·U
†
n−1P

αn

in
]

=
∑

α1,...,αn

α1 · · ·αnp(α1, . . . , αn) =
∑

α1,...,αn

α1 · · ·αnD([α], [α]), (8)

where D([α], [α]) is the diagonal terms of decoherence functional with [α] = [α1, . . . , αn].

Quantum-Classical Signalling Game (QCSG)

• Instead of two players Alice and Bob, we consider only one player Abby at two succes-
sive instants in time for quantum-classical signalling games [?] as

−−→qcsg = ⟨{τx}, {ωy};A,B; l⟩. (9)

For admissible quantum strategies, suppose Abby at t1 receives τxX and makes a mea-

surement of instruments {Φ
a|λ
X→A}, and gains the outcome a. The quantum output goes

through the quantum memory N : A → B. The output of the memory and ωy
Y received

by Abby at t2 are fed into a measurement {Ψ
b|a,λ
BY }, with outcome b. Then

pq(a, b|x, y) =
∑
λ

π(λ) Tr[({(NA→B ◦ Φ
a|λ
X→A)(τxX)} ⊗ ωy

Y )Ψ
b|a,λ
BY ]. (10)

• Assume ωy
Y to be trivial. For Abby at the initial time and the later time, we consider

Φa
X→A : τxX →

∑
iM

a
i τ

x
XM

a†
i ,

∑
Ma†

i Ma
i = 1HA. Between two times, the transformation

from A to B is given by N : ρA →
∑

j NjρAN
†
j with

∑
j N

†
jNj = 1HA. Then

pq(a, b|x, y) = Tr[{(NA→B ◦ Φa
X→A)(τxX)}Ψ

b|a
B ] =

∑
ijk

Tr[NjM
a
i τ

x
XM

a†
i N †

jΨ
b|a
B ]. (11)

Out-of-Time-Order Correlation (OTOC)

• Consider local operators W and V . With a Hamiltonian H of the system, the Heisen-
berg representation of the operator W is given as W (t) = eiHtWe−iHt. Out-of-time-order
correlation functions (OTOCs) are usually defined as

⟨VW (t)V †W †(t)⟩ = ⟨V U(t)†WU(t)V †U †(t)W †U(t)], (12)

where U(t) = e−iHt is the unitary evolution operator and the correlation is evaluated on
the thermal state ⟨·⟩ = Tr[e−βH·]/Tr[e−βH].
• Consider a qubit evolving in time and backward. In particular, we measure A at t1, B
at t2 and A again at t3 and assume the evolution forwards is described by U and backward
U †. Then the probability is given by

Tr[AU †BUAρA†U †B†UA†] = Tr[AB(t)AρA†B†(t)A†]. (13)

If we assume that AA† = A, ρ = 1
d, Eqn. (13) will reduce to the OTOC.

Path Integral (PI)

• Two-point correlations functions in the path integral formalism is defined as

⟨q(t1)q(t2)⟩ =

∫
[dq(t)]q(t1)q(t2) exp[−S(q)/ℏ]∫

[dq(t)] exp[−S(q)/ℏ]
. (14)

• In the Gaussian representation of pseudo-density matrices, temporal correlation for q1

at t1 and q2 at t2 with the evolution U and the initial state |q1⟩ is given as

⟨{q1, q2}⟩ =

∫
dq1dq2q1q2

∣∣∣∣∣
∫ q(t2)=q2

q(t1)=q1

[dq(t)] exp[−S(q)/ℏ]

∣∣∣∣∣
2

. (15)


