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The inseparable nature of quantum correlations play an important role as resources in different information processing tasks. These resources
are in general vulnerable in presence of environmental noise. We show that it is possible to obtain advantage for entanglement and steering by
employing some selective measurements before or after the environmental interaction with the system. This prescription of finding the suitable
measurement operators has been introduced based on the unitary evolution of the corresponding channel and hence not unique, which leaves
us with different choices.

DECOHERENCE MODEL AND QUANTUM CORRELA-
TION

We consider Generalised amplitude damping channel (GADC), Kraus
operators of which are given as,
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0
√
η

]
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√
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1− η
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]
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√
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]
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√
1− ν
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0 0√
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]
. (1)
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Alice performs a black box measurement at her own side producing
an assemblage at Bob’s end given by,

σ
a|x
B = TrA[(Ma

x ⊗ I)ρAB] (2)

Now, Bob performs a qubit measurement on the assemblage and
hence producing a correlation p(ab|xy). This correlation is said to be
steerable if it cannot be decomposed as a LHS model. For quantifying
the steerability we consider the violation of a steering inequality,
Analog CHSH inequality for steering:√
〈(A0 + A1)B0〉2 + 〈(A0 + A1)B1〉2+

√
〈(A0 − A1)B0〉2 + 〈(A0 − A1)B1〉2 ≤ 2 (3)

where,
〈AxBy〉 =

∑
a,b

(−1)a⊕bp(ab | xy) (4)

PARTIAL COLLAPSE MEASUREMENT

The detector detects the system with probability w if and only if the

state of the second particle is in |1〉 (=
[
0
1

]
). Here we consider the mea-

surement operator corresponding to the scenario when the system is
not detected by the measuring apparatus. The measurement opera-
tor W0 corresponding to this situation can be evaluated by using the
relation, W †

1W1 +W †
0W0 = I. Hence,

W0 = |0〉 〈0| +
√
1− w |1〉 〈1| =

[
1 0
0
√
1− w

]
. (5)

and the reverse measurement operator is,

R0 =

[√
1− r 0
0 1

]
. (6)Motivation for the new method

In this case we have considered ⌫ = 1
i.e. ADC. 

In this case we have considered the GADC at 

Red curves denote the violation of ACHSH inequality, with the weak 
measurement and Black curves denote the same without the technique 
being employed, where Green lines denote the limit of the violation of the 
ACHSH inequality. The initial state considered the parallel Bell state.
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(i) ν = 1 i.e. ADC, (ii) ν = 0.234, η = 0.646 i.e. GADC.

UNITARY EVOLUTION OF THE CHANNEL

Any general CPTP map has an operator-sum representation (or, Kraus
representation) expressed as,

N (A) =
M∑
i=1

LiALi† (7)

with the Kraus operators Li satisfying the condition,
∑M

i=1Li
†Li = I. Al-

ternatively, for every A (thus, A can also be a density matrix of S), one
can write,

N (A) = TrB[USB(A⊗ |1〉B 〈1|)USB
†]. (8)

Our aim is to find a dMxdM unitary matrix USB which corresponds to
the map such that, Li = B 〈i|USB |1〉B ,∀i = 1, 2, ...,M , with d being the
dimension of the system Hilbert space. Hence, the ( αi , β1 ) -entry of
the matrix USB can be obtained in the following way,

uαi,β1 ≡ (S 〈α| ⊗ B 〈i|)USB(|β〉S ⊗ |1〉B)
= S 〈α|Li |β〉S , ∀α, β = 1, 2, ..., d. (9)

- All the column vectors of USB should be orthogonal to each other.
- The individual columns must be normalised.
- The unitary should reproduce identity map in case of GADC, for
ν = η = 1.

The Kraus operators corresponding to the channel described by the
inverse unitary,

TrB[U
†
SB(σS ⊗ |1〉B 〈1|)USB] =

4∑
i=1

JiσSJ
†
i , (10)

with, Ji = B 〈i|U−1SB |1〉B for i = 1, 2, 3, 4. One set of measurement opera-
tors corresponding to the inverse unitary,

J
(1)
1 =

[√
ν 0
0
√
ην

]
; J

(1)
2 =

[
−

√
η−ην√
−νη+η+ν 0

0 −
√
η − ην

]

J
(1)
3 =

[
0 −
√
1− η

0 0

]
; J

(1)
4 =

[
0 0

−
√

(η−1)(ν−1)ν√
−νη+η+ν 0

]
. (11)
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(i) Employing partial collapse measurement, (ii) Employing the tech-
nique of unitary dilation. (ν = 0.054, η = 0.551)

CONCLUSION AND FUTURE ASPECTS

- We introduce a general method to preserve certain types of quantum
correlations in presence of environmental noise.
- The prescription is implementable whenever the dynamics of the
channel is known.
- The unitary dynamics is not unique.
- Our aim is to choose such an USB (as well as σ(0)B ) such that:
i) USB becomes IS ⊗ IB whenever N becomes the identity channel.
ii) USB(ρS⊗σ(0)B )USB

† is close to a product state of the form TrB[USB(ρS⊗
σ
(0)
B )USB

†]⊗ σ(1)B where σ(1)B is fixed state of the ancilla.
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