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Abstract and outline
We consider the evolution of a harmonic oscillator in general
Gaussian states undergoing simultaneous weak continuous position
and momentum measurements. The expectation values of position
and momentum show stochastic evolution while the covariance
matrix elements show deterministic evolution and converge to their
steady states. We apply the Chantasri-Dressel-Jordan stochastic path
integral formalism to express the probability density of a sequence of
readouts as a path integral of the exponential of a stochastic action.
Extremization of the action gives us the most-likely paths. We find
the analytical solutions for these most-likely paths for the steady
state values of the covariance matrix elements. We also analyze the
energetics of the measurement process and characterize final state
probability densities starting from an initial state. We confirm our
results using simulations.

System description
System Hamiltonian is Ĥ = 1

2(X̂
2 + P̂ 2).

Weak continuous measurements (in dτ intervals) of Gaussian type with Kraus
operators
M̂X(r1) =

( dτ

2πT1

)1
4

exp

[
− dτ

4T1
(r11− X̂)2

]
M̂P (r2) =

( dτ

2πT2

)1
4

exp

[
− dτ

4T2
(r21− P̂ )2

]
.

r1, r2 are the readouts of position and momentum measurements.
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T1 and T2 (� dτ ) are collapse time
scales of the X and P measurements.
The unitary dynamics and the Kraus
operators preserve the Gaussianity of
the state.
We define (

〈
X̂
〉
,
〈
P̂
〉

)> = (q1, q2)
> = qqq.

Covariance matrix Γ =

(
2Var(X̂) 2Cov(X̂, P̂ )〈

X̂P̂ + P̂ X̂
〉
− 2

〈
X̂
〉〈

P̂
〉

2Var(P̂ )

)
.

For pure states det Γ = 1.

State evolution

Sample trajectories from the same
initial state are shown for T1 = T2 = 1

and τf = 5.00.
In this case, Γ converges to the 12 at
τ →∞. For simplicity we assume
Γ = 12.
The quadratures (qqq) show stochasticity
due to measurement back action.
Spiral trajectories in phase space
signify energy gain/loss due to
measurements.
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Trajectories τ1 =1.0, τ2 =1.0, tf = 5.00

Chantasri-Dressel-Jordan stochastic path integral formalism
The CDJ formalism lets us calculate the probability density associated with a
sequence of readouts {rrrk}.
qqq(0) = qqqi → qqq(τf) = qqqf through intermediate states {qqqk} and readouts {rrr}.
The CDJ formalism tells us
P({qqqk}, {rrrk}) =

∫
Dppp eS [ppp,qqq,rrr] =

∫
Dppp exp

[∫ τf

0

dτ (−ppp · q̇̇q̇q +H(ppp,qqq, rrr))

]
.

ppp is momentum conjugate to qqq, not to be confused with the mechanical
momentum.
S and H are the stochastic action and stochastic Hamiltonian respectively.
δS = 0 gives the most-likely readouts. The corresponding trajectory is the
most-likely path or the optimal path.
For the steady state of the covariance matrix elements, the most-likely paths can
be solved for analytically.

Optimal paths
The energy conserving optimal path (yellow solid) is circular in phase space, as
the distance from the origin corresponds to the expectation value of the
mechanical energy. The energy decreasing (red dash-dotted) and energy
increasing (red dashed) optimal paths are spirals.
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A sample stochastic trajectory (green) is also shown.
Averages of simulated clustered trajectories (denoted as ’+’) for the same
boundary conditions show very good agreement with the analytical results.
Histograms show the diffusion of trajectories at three different times. The
colorbar denotes the probability density of trajectories.
The energy conserving trajectory is the the globally most-likely path.

Energetics

The conjugate momenta are sinusoidal
while the energy conserving path
corresponds to ppp = 0.
The expectation value of the
mechanical energy is
EM(τ ) =

1

2
+

1

2

{(
Q1f +

τ

τf
(q1f −Q1f)

)2

+(
Q2f +

τ

τf
(q2f −Q2f)

)2}
.

Q1f = q1i cos τf + q2i sin τf and
Q2f = −q1i sin τf + q2i cos τf denote the
final state along the energy

conserving optimal path.
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Energy-Momentum τ1 =1.0, τ2 =1.0, tf = 5.00

Final state probability densities
Using the CDJ path integral formalism we also get P (qqqf |qqqi).
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ω =1.0, τ1 =1.0, τ2 =1.0, tf = 10.00

For T1 = T2 = T and Γ = 12,
P (qqqf |qqqi) =
2T
πτf

exp

{
−2T
τf

(q1f −Q1f)2

}
× exp

{
−2T
τf

(q2f −Q2f)2

}
Analytical results (orange
surface) show good agreement
with simulated results (black
wireframe).

Summary and discussions
Using Chantasri-Dressel-Jordan stochastic path integral formalism, first time for
a continuous variable system, we completely characterize the measurement
statistics of a continuously monitored general Gaussian state harmonic oscillator.
Our optimal path description and analysis of the energetics can be useful for e.g.
feedback control and cooling of resonators.
Our work also provides a new way to connect optomechanical elements with
novel quantum technologies like quantum measurement engines and refrigerators.
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