

Dephasing-enhanced transport in boundary-driven quasiperiodic chains

Artur M. Lacerda ^{1, 2} John Goold ² Gabriel T. Landi ²

¹Institute of Physics, University of São Paulo ²Department of Physics, Trinity College Dublin

Introduction

- Macroscopic thermal conductors in contact with two baths follow Fourier's law: $J = \kappa \Delta T/L$
- On the other hand, non-interacting boundary-driven chains with no potential are ballistic.
- Quasiperiodic potentials lead to rich transport properties, even in 1D
- The Fibonacci model can exhibit any type of transport regime
- This model has been used as the working fluid in quantum thermal machines
- The addition of dephasing noise always leads to diffusion. What happens if we add dephasing on top of the Fibonacci potential?

Model & Methods

We considered a fermionic tight-binding chain with L modes, subject to an on-site potential:

$$H = -\sum_{i=1}^{L-1} \left(c_{i+1}^{\dagger} c_i + c_i^{\dagger} c_{i+1} \right) - \sum_{i=1}^{L} V_i c_i^{\dagger} c_i.$$

The on-site potential V_i is constructed from the Fibonacci word. Starting from A and AB, each word is the concatenation of the two previous ones:

$$A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAAB \rightarrow \dots$$

The potential is constructed by associating each symbol with a value:

The chains is coupled to thermal baths on each end, and is subject to *dephasing*. We model its time evolution by the GKSL master equation:

$$\dot{
ho} = -i[H,
ho] + \mathcal{D}_1(
ho) + \mathcal{D}_L(
ho) + \sum_{i=1}^L \mathcal{D}^{\mathsf{deph}}(
ho).$$

The dissipators are

where

$$\mathcal{D}_{\alpha}(\rho) = \gamma (1 - f_{\alpha}) D[c_{\alpha}^{\dagger}] + \gamma f_{\alpha} D[c_{\alpha}], \quad \alpha = 1, L,$$

$$\mathcal{D}_{i}^{\text{deph}}(\rho) = \Gamma D[c_{i}^{\dagger} c_{i}], \quad i = 1, \dots, L,$$

$$D[L] = L \rho L^{\dagger} - \frac{1}{2} \Big\{ L^{\dagger} L, \rho \Big\}.$$

The main observable of interest is th particle current, defined as

$$J = i \left\langle c_{i+1}^{\dagger} c_i - c_i^{\dagger} c_{i+1} \right\rangle$$

We compute J numerically for increasing values of L, then use the data to fit a power-law of the form

$$J \sim \frac{1}{L^{\nu}}$$

The transport coefficient ν is used to classify the transport regime:

Transport regime	Transport coefficien
Ballistic	$\nu = 0$
Superdiffusive	$0 < \nu < 1$
Diffusive	$\nu = 1$
Subdiffusive	$\nu > 1$
Localized	$\nu = \infty$

Without dephasing, the Fibonacci model goes continuously from ballistic to subdiffusive when the potential strength is increased:

What happens with dephasing?

When dephasing present, transport is always diffusive for sufficiently large L, for any $\Gamma > 0$.

Figure 1. J vs. L with different dephasing strengths Γ . (a) $\lambda = 0.5$; (b) $\lambda = 1.0$; (c) $\lambda = 2.0$; (d) $\lambda = 4.0$.

Dephasing-enhanced transport

Alternatively, the transport regime can also be classified trough the system's finite-size conductivity $\kappa(L)$, defined from

$$J = \kappa(L) \frac{\Delta f}{L}.$$

- For ballistic systems, $\kappa(L) \to \infty$ as $L \to \infty$
- For diffusive systems, $\kappa(L)$ approaches a constant when $L \to \infty$
- For subdiffusive systems, $\kappa(L) \to 0$ as $L \to \infty$

In order to study the interplay between dephasing and the quasiperiodic potential, we analyzed how the conductivity scales with the dephasing strength:

Figure 2. (a) κ vs. Γ for the Fibonacci model, with L=987. (b) Same, but focusing on the curves for $\lambda=4$ and $\lambda=5$, for improved visibility.

Conclusion

- We made thorough review of the transport properties of the Fibonacci and AAH model without dephasing.
- We performed a detailed analysis of the scaling of the conductivity in the Fibonacci model under the present of dephasing.
- Our results also show that when the dephasing strength is sufficiently low, the conductivity behaves in a piece-wise fashion as a function of the system size
- We have shown that in the subdiffusive phase of the model, the addition of dephasing can actually lead to an increase in the absolute value of the current.

Download the paper!

Get it on https://arxiv.org/abs/2106.11406 or scan the QR code:

