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Chapter 1
Hilbert spaces, measurement,
evolution, and system composition
This chapter introduces the formalism we need to describe quantum systems. For a more ex-
tensive discussion, we refer the reader to Chapter 3 (States and observables) of Schumacher and
Westmoreland [1]. The chapter also recaps many useful notions and results from linear algebra.

1.1 Hilbert spaces and the braket notation
Definition 1.1. An inner product space (X , ·) over a complex field and inner product · is said
to be a Hilbert space when the distance d induced by the inner product forms a complete metric
space, i.e. a metric space where every Cauchy sequence has a limit contained in the space itself.

The definition of a Hilbert space is important as it guarantees that any converging infinite
or integral sum of elements in the space is still in the space. In quantum physics, a physical
system is represented by a Hilbert space over complex field, and a (column) vector in this space
represents a possible state of the system. A column vector is written in the form |ψ〉, denoted
as ket. We define the transpose conjugate of |ψ〉 as

〈ψ| = (|ψ〉)†

and this row vector is what we call a bra. The inner product of the Hilbert space between two
vectors |φ〉, |ψ〉 can then be expressed in the following way:

〈φ|ψ〉

and this is the bra-ket notation for the inner product. A bra can be also seen as a function:

〈φ| : H → C
|ψ〉 7→ 〈φ|ψ〉

we will see later that this view is not unusual, and it is used to extract information from the ket
in a very convenient way. It is also possible to define an outer product between states, called
ket-bra:

|ψ〉〈φ|

Like in standard linear algebra, while the inner product is a scalar (in our case, a complex
number), the outer product is an operator1. In this way we can easily construct transformations
(or better, endomorphisms) on H.

Discrete spaces and qubits. When we have to represent a system with a finite or countably
infinite number of states, we use a Hilbert space spanned by a basis with a discrete number of
vectors:

H = span{|x〉}x 3 |ψ〉 =
∑
x

ψx|x〉, ψx ∈ C ∀x,
∑
x

|ψx|2 = 1.

1You may be more familiar with the term "matrix". The term operator denotes an extension of the concept
of a matrix to vector spaces with infinite dimensions, which may be the case in quantum physics. The idea,
however, remains the same and you can still imagine an operator as a matrix.
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The last constraint is what we call normalization, i.e. vectors of the Hilbert space representing
a state must have unitary norm (we will see later why this property is important, when we will
talk about probability of outcomes). The special case where we only have two basis vectors is
called qubit:

H = span{|0〉, |1〉} =⇒ |ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1

{|0〉, |1〉} is usually called the computational basis of a qubit.

Infinite continuous dimensions. A continuous space is used when we need to deal with
physical systems that involve continuous variables (e.g. position in space):

H = span{|x〉}x∈R 3 |ψ〉 =
∫
R
ψ(x)|x〉dx,

∫
R
|ψ(x)|2dx = 1

In both cases |ψ〉 is an arbitrary state of the system which can be expressed in terms of a basis
of the Hilbert space. From now on we will assume that all the bases we use are orthonormal, it
will be clear later why this is important.

1.2 The wave function
We expressed a state |ψ〉 in terms of a basis of the Hilbert space of a system. Let us consider
the continuous case (the discrete case is analogous):

ψ =
∫
R
ψ(x)|x〉dx

where ψ(x) is a function containing the components of the vector |ψ〉 with respect to the basis
{|x〉}. It is called the wave function. Let us now compute the inner product 〈x|ψ〉:

〈x|ψ〉 = 〈x|
∫
R
ψ(x′)|x′〉dx′

=
∫
R
ψ(x′)〈x|x′〉dx′

=
∫
R
ψ(x′)δ(x− x′)dx′

= ψ(x)

where δ(x) is the Dirac delta function, and it follows from the fact that the basis {|x〉}x is
orthonormal. A short introduction to the Dirac delta is given in Appendix A. Therefore, the
inner product of a state with a basis element yields the value of the wave function with respect
to that particular element, i.e. the projection of |ψ〉 onto |x〉.

1.3 Measurements
The wave function has an important physical meaning. Consider a basis {|x〉}x of the Hilbert
space of a physical system: we would like to measure the system with respect to this basis. The
first property of a quantum system is that, when we measure it with respect to a basis, the
result will be an element of the basis. A particular element |x〉 is the result of the measurement
with probability:

|〈x|ψ〉|2 = |ψ(x)|2
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where |ψ〉 is the state of the system at the moment of the measurement, and ψ(x) is the corre-
sponding wave function. Another important property is that, when the measurement happens,
the state collapses to the measured basis element: if we measure a system and we read an
element |x〉, then |x〉 will be the new state of the system.

As an analogy to better grasp this concept, consider throwing a dice and “measuring” the
outcome by looking at it; if we cover it or look away for a while, we still expect to see the same
number on top after checking the dice again.

1.4 Probability of outcomes in a measurement
For a concrete example, consider the position of an electron on a line (this will be our running
example throughout this chapter). Let {|x〉}x be the position basis of the Hilbert space, i.e.
it consists of states representing a point x ∈ R, which is the position of the electron. The
formalization of a measurement with respect to this basis induces a probability space (Ω,F ,P),
where Ω = {x}x∈R consists of all the elements of the basis, and the probability of each element
is given by:

P (x) = |ψ(x)|2dx

The differential operator dx appears because here we are considering a continuous space. In the
case of a discrete system the induced probability space is discrete, and the probability can be
defined accordingly. In any case, one can see now why we required a state to be a normalized
vector.

Therefore, coming back to our electron on a line example, if we want to know the probability
of measuring the position of the electron in a certain interval [a, b], we can compute it as:

P ([a, b]) =
∫ b

a
P (x) dx =

∫ b

a
|ψ(x)|2dx

If we define P[a,b] as the projection operator in the subspace spanned by {|x〉}x∈[a,b], we can
rewrite the probability above in the following way:

〈ψ|P[a,b]|ψ〉 = 〈ψ|
(∫ b

a
|x〉〈x|dx

)
|ψ〉

=
∫ b

a
〈ψ|x〉〈x|ψ〉dx

=
∫ b

a
|〈x|ψ〉|2dx

=
∫ b

a
|ψ(x)|2dx

= P ([a, b])

Therefore, it is sufficient to compute the inner product of |ψ〉 with a projection operator onto a
subspace, and we get the probability that the state collapses into that subspace upon measure-
ment.

At this point, it can be useful to introduce the following terminology:

Definition 1.2 (Superposition). Consider a system in a state |ψ〉 and let {|x〉}x be a basis of
the corresponding Hilbert space. |ψ〉 is a basis state with respect to {|x〉}x if |ψ〉 = |x〉 for
some basis element |x〉. In any other case, |ψ〉 is said to be in a superposition of the elements
of the basis {|x〉}x.
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From what we saw above, one can imagine that measuring a basis state will yield a trivial
probability space, where the probability of measuring the element of the basis equal to the state
is 1. Keep in mind that both the induced probability space and the notion of basis state and
superposition are relative to the particular basis we use for measurement: for every state |ψ〉
there is a basis in which |ψ〉 is a basis state and a basis in which |ψ〉 is in superposition.

Representing a measurement with projectors. It is often useful, especially when we talk
about continuous systems, to not measure with respect to single basis elements, but to group
elements of the measurement basis in projector operators like the one above. For example, if
we only want to know whether a particle is on the left or on the right of a certain position L,
we can simply divide the identity 1 into two projectors:

1 = P(−∞,L) + P(L,+∞)

Each of these projectors can be used to compute the collapse probability as above.
Moreover, it naturally follows that any projector PA is idempotent:

P 2
A =

∫∫
A2
|x〉〈x|x′〉〈x′|dxdx′

=
∫∫

A2
|x〉δ(x− x′)〈x′|dxdx′

=
∫
A
|x〉〈x|dx = PA

Global and relative phase. Since the Hilbert space of a quantum system is complex, we
would also like to understand why phases are important. We distinguish two cases: the first is
called global phase, which is a phase eiφ that multiplies the whole state of a system, and we now
prove that this term has no physical meaning.

Theorem 1.3. Let |ψ〉 be a vector in a Hilbert space representing the state of a quantum system,
and consider φ ∈ [0, 2π). The vectors |ψ〉 and eiφ|ψ〉 represent the same state.

Proof. Consider an arbitrary basis of the Hilbert space {|x〉}x. The measurement of eiφ|ψ〉
induces a probability space (Ω,F ,Pφ) such that:

Pφ(x) = |〈x|eiφ|ψ〉|2 = |eiφ〈x|ψ〉|2 = |〈x|ψ〉|2

Therefore the probability spaces induced by the two states are equal with respect to any mea-
surement basis.

On the other hand, we have a relative phase when different components of the state vector
have different phases. In any case, we may represent a state with a vector where one of the
components is real, i.e. normalize the phases. For example, in the case of a qubit:

|ψ〉 = aeiφA |0〉+ beiφB |1〉 = eiφA
(
a|0〉+ bei(φB−φA)|1〉

)

1.5 Observables
An observable is an operator representing a certain quantity of the system we want to observe.

A =
∫
R
f(x)|x〉〈x|dx
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where {|x〉} is a basis of the Hilbert space and f(x) ∈ R is the observed quantity, i.e. f(x) is
the quantity we would observe if the system were in state |x〉 upon measurement. Obviously A
is Hermitian since:

A† =
(∫

R
f(x)|x〉〈x|dx

)†
=
∫
R
f(x) (|x〉〈x|)† dx =

∫
R
f(x)|x〉〈x|dx = A

In particular, notice that f(x) is the eigenvalue associated with the eigenvector |x〉 of A. These
eigenvalues are also called labels of the observable.

For example, in the case of the position of an electron, the observable of the position is:

X =
∫
R
x|x〉〈x|dx

If we want to compute the expected value of a quantity in a state |ψ〉 we can simply compute
the inner product with the corresponding observable. In the case of the position of an electron
we have:

〈X〉 = 〈x|X|x〉

= 〈ψ|
(∫

R
x|x〉〈x|dx

)
|ψ〉

=
∫
R
x〈ψ|x〉〈x|ψ〉dx

=
∫
R
x|ψ(x)|2dx

In a probabilistic formalization, one can see an observable as a random variable: the observ-
able A above assumes value f(x) if the event x ∈ Ω occurs.

1.6 Post-measurement state
Suppose that we measure a state |ψ〉 with a set of projection operators {PA, PB, PC}, and
that this causes a collapse of the state in the subspace of PA. How can we compute the post-
measurement state? We know that the new state must be the projection of |ψ〉 onto the subspace
of PA, and we also need to impose that the new state is normalized. This leads to:

|ψ′〉 = PA|ψ〉
|PA|ψ〉|

= PA|ψ〉√
〈ψ|P 2

A|ψ〉
= PA|ψ〉√

〈ψ|PA|ψ〉

= 1√
〈ψ|PA|ψ〉

∫
A
|x〉〈x|dx

∫
R
ψ(x′)|x′〉dx′

= 1√
〈ψ|PA|ψ〉

∫
A
dx

∫
R
ψ(x′)|x〉〈x|x′〉dx′

= 1√
〈ψ|PA|ψ〉

∫
A

∫
R
ψ(x′)|x〉δ(x− x′)dxdx′

=
∫
A

ψ(x)√
〈ψ|PA|ψ〉

|x〉dx !=
∫
R
ψ′(x)|x〉dx

Therefore, the collapsed wave function is:

ψ′(x) =


ψ(x)√
〈ψ|PA|ψ〉

x ∈ A

0 x 6∈ A

7



1.7 Reversible Evolution

1.8 Evolution in qubits: quantum gates
An evolution of the state |ψ〉 of a quantum system can be expressed as a unitary transformation
in its Hilbert space (the definition of unitary operator can be found in Appendix B). In the case
of a qubit, we have 2×2 matrices that represent single-qubit quantum gates. The first quantum
gate we discuss is the Hadamard gate:

H = 1√
2

(
1 1
1 −1

)
This matrix transforms the components of the computational basis as follows:

H|0〉 = |0〉+ |1〉√
2

= |+〉, H|1〉 = |0〉 − |1〉√
2

= |−〉

where {|+〉, |−〉} forms a basis of the qubit space called Hadamard basis.
Other interesting quantum gates are the so called Pauli matrices:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
One can see that X acts exactly as a NOT gate with respect to the computational basis:

X|0〉 = |1〉, X|1〉 = |0〉

while it acts as follows on the Hadamard basis:

X|+〉 = X|0〉+X|1〉√
2

= |1〉+ |0〉√
2

= |+〉

X|−〉 = X|0〉 −X|1〉√
2

= |1〉 − |0〉√
2

= −|−〉

that is, the Hadamard basis is the eigenbasis of X (with +1 and −1 being the eigenvalues
associated to |+〉 and |−〉 respectively). On the other hand, one can see that Z acts in the exact
opposite way as X: while it swaps |+〉 and |−〉, the computational basis is its eigenbasis.

Pauli matrices as observables. Since X,Y, Z are Hermitian, they can also be seen as ob-
servables. In particular notice that:

X = |+〉〈+| − |−〉〈−|
Z = |0〉〈0| − |1〉〈1|

Therefore, if we take for example X, a |+〉 is measured with a label +1, while a |−〉 is measured
with a label −1.

One last thing to notice is that transforming a state |ψ〉 with an operator U before measuring
with respect to an observable M is equivalent to a measurement with respect to the following
observable:

M ′ = UMU †

In order to see this, consider the spectral decomposition of M :

M = V ΛV † =
∑
i

λi|vi〉〈vi| =⇒M ′ = U(V ΛV †)U † =
∑
i

λiU |vi〉〈vi|U †

implying that, while the labels do not change, the eigenvectors of the new observables are
{U |vi〉}i. Keep in mind that this also works for infinite-dimensional spaces.
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Example with qubits. Assume we want to perform a measurement in the X basis. This is
equivalent to first evolving the system via the H gate and then measuring with respect to the
Z basis, as:

HZH† = H(|0〉〈0| − |1〉〈1|)H since H is Hermitian
= H(|0〉〈0|)H −H(|1〉〈1|)H
= |+〉〈+| − |−〉〈−| = X

In general, we represent the evolution of qubit systems using quantum circuit diagrams. This
transform-then-measure example would look as follows:

Z
|ψ〉 H

We read the line from left to right as an evolution over time. A gate is represented as rectangle
enclosing an identifier for the type of gate, whereas the meter symbol is used to represent a
measurement, specifically in the Z basis.

1.9 Unitary dynamics
We already said that a reversible evolution is expressed with a unitary operator. Note that
unitarity implies preservation of the inner products:

|ψ′〉 = U |ψ〉, |φ′〉 = U |φ〉 =⇒ 〈φ′|ψ′〉 = 〈φ|U †U |ψ〉 = 〈φ|ψ〉

and, in particular, 〈ψ|ψ〉 remains 1 over time, for any state |ψ〉.
Moreover, we know that a unitary operator U admits an orthonormal eigenbasis:

U =
∑
k

uk|k〉〈k|

1 = 〈k|k〉 = 〈k|U †U |k〉 = 〈k|u∗kuk|k〉 = |uk|2〈k|k〉 = |uk|2

implying that every eigenvalue has unitary absolute value. Thus, we can directly express U as:

U =
∑
k

eiαk |k〉〈k|

In this case, {|k〉}k are said to be the eigenstates of the evolution U .

1.10 Deriving the Schrödinger equation
We consider a state evolving over time:

|ψ(t)〉 = U(t, t0)|ψ(t0)〉

The temporal derivative of |ψ(t)〉 can easily be defined:

∂

∂t
|ψ(t)〉 = lim

∆t→0

|ψ(t+ ∆t)〉 − |ψ(t)〉
∆t

= lim
∆t→0

U(t+ ∆t, t)|ψ(t)〉 − |ψ(t)〉
∆t

9



= lim
∆t→0

U(t+ ∆t, t)− 1
∆t |ψ(t)〉

= G|ψ(t)〉

We found that the temporal derivative of a state can be expressed as a linear operator.

Theorem 1.4. G is anti-Hermitian.

Proof. We know that 〈ψ(t)|ψ(t)〉 = 1, thus it does not change over time:

0 = ∂

∂t
(〈ψ(t)|ψ(t)〉)

= ∂

∂t
(〈ψ(t)|) |ψ(t)〉+ 〈ψ(t)| ∂

∂t
(|ψ(t)〉)

= 〈ψ(t)|G†|ψ(t)〉+ 〈ψ(t)|G|ψ(t)〉

= 〈ψ(t)|
(
G† +G

)
|ψ(t)〉

Thus G+G† = 0.

We now define H = i~ · G as the Hamiltonian of the system, where ~ is Planck’s constant,
measured in Joule times second [J · s]. Notice that the Hamiltonian is Hermitian, and it can be
seen as an observable of the total energy of the system: in fact, G is expressed in inverse seconds
[s−1] (since it is a temporal derivative operator) and, together with the Planck constant, we get
that the eigenvalues of H are expressed in Joule [J ].

The definition of the Hamiltonian yields the Schrödinger equation:

H|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉.

1.11 Composing systems and tensor product
Consider two Hilbert spaces HA,HB. Given |x〉 ∈ HA, |y〉 ∈ HB we define a tensor product:

|x〉A ⊗ |y〉B

where we usually explicit the subscripts A,B on the kets indicating which space the states belong
to. For any |x1〉, |x2〉 ∈ H1, |y1〉, |y2〉 ∈ H2, we have that:

• The tensor product is distributive over addition

(|x1〉+ |x2〉)A ⊗ |y1〉B = |x1〉A ⊗ |y1〉B + |x2〉A ⊗ |y1〉B
|x1〉A ⊗ (|y1〉+ |y2〉)B = |x1〉A ⊗ |y1〉B + |x1〉A ⊗ |y2〉B

• Scalar constants a ∈ C can be taken out of the product

(a|x1〉)A ⊗ |y1〉B = |x1〉A ⊗ (a|y1〉)B = a(|x1〉A ⊗ |y1〉B)

• The tensor product of operators is applied independently to each component:

(U1 ⊗ U2)(|x1〉A ⊗ |y1〉B) = (U1|x1〉A)⊗ (U2|y1〉B)

10



• Inner product acts linearly on the tensor product (i.e. the order of application of inner
product and tensor product can be reversed):

(〈x1|A ⊗ 〈y1|B)(|x2〉A ⊗ |y2〉B) = 〈x1|x2〉〈y1|y2〉

From now on, we will write |x〉 ⊗ |y〉 when the spaces we are referring to are clear from the
context. It is also possible to find |x〉|y〉 when it is clear that a tensor product is involved, or
even |xy〉 when it is clear which state belongs to which space.

We extend the definition of the tensor product to Hilbert spaces:

H1 ⊗H2 = span {|x〉 ⊗ |y〉 | |x〉 ∈ H1, |y〉 ∈ H2}

1.12 Entanglement and measurement
At the end of the previous section the quantum circuit ended up with this output:

|ψ〉 = |00〉 − |11〉√
2

What is the state of the first qubit in this case? Actually there is no answer to this question, in
the sense that there is not a well-defined state for the single qubits. This is because the states
of the two qubits are somehow tied to each other, i.e. the two qubits are entangled.

Definition 1.5 (Quantum entanglement). Let H1,H2 be the state spaces of two sub-systems,
and consider the product space H1⊗H2. A state |ψ〉 ∈ H1⊗H2 is said to be unentangled (or
product state) if it can be written as a tensor product of the states of the single subsystems:

|ψ〉 = |ψA〉 ⊗ |ψB〉

Otherwise, the state is said to be entangled.

In order to give more intuition about entanglement, we talk about something more familiar:
independence of random variables in probability. We can think of the two subsystems as two
random variables: if the state of the whole system is unentangled, we can think of them as
two independent random variables, where knowing something about one system does not tell us
anything about the other.

In fact, this analogy is not a coincidence: as we said in Section 1.4 a state |ψ〉 with wave
function ψ(x) induces a probability space (Ω,F ,P) with probability |ψ(x)|2 (with or without the
differential dx, depending on the type of system we are considering, either discrete or continuous).
This holds in this case as well: if {|x〉}x and {|y〉}y are bases of the two subsystems, then
{|x〉 ⊗ |y〉}x,y is a basis of the whole system and:

|ψ〉 =
∫∫

R2
ψ(x, y)(|x〉 ⊗ |y〉)dxdy

implying that the induced probability space gives:

P (x, y) = |ψ(x, y)|2dxdy

The interesting thing comes when |ψ〉 is unentangled. In this case, we can rewrite |ψ〉 as:

|ψ〉 = |ψA〉 ⊗ |ψB〉 =
(∫

R
ψA(x)|x〉dx

)
⊗
(∫

R
ψB(y)|y〉dy

)

11



=
∫∫

R2
ψA(x)ψB(y)|x〉 ⊗ |y〉dxdy

Thus, the induced probability space yields:

P (x, y) = |ψA(x)ψB(y)|2dxdy = |ψA(x)|2dx · |ψB(y)|2dy = PA(x) · PB(y)

which is exactly the definition of independence in probability. These calculations answers our
questions about what the probability of measuring an outcome is.

Our attention now goes to what happens when an outcome is actually measured. It will not
be a surprise if we say that measuring only one of the subsystems when the global system is in
an unentangled state, the other subsystem will not be affected. More formally, measuring only
the first subsystem with an observable A is equivalent to measuring the whole system with the
observable A⊗ 1.

Why is measuring with the identity operator equivalent to not measuring at all?
Think about the post-measurement state we derived in Section 1.6. We only have one subspace,
i.e. the whole space, where we end up with probability 1. In this case, the post-measurement
state is:

1|ψ〉
|1|ψ〉|

= |ψ〉

Thus, nothing changes with probability 1. Also, we retrieve no information out of such mea-
surement, as all the eigenvalues of 1 are 1.

Measurement of a subsystem in unentangled state. If we suppose that, upon measure-
ment of state |ψ〉 = |ψA〉 ⊗ |ψB〉 with the observable A, we end up in the subspace associated
with the projection operator P , the post-measurement state of the whole system is:

(P ⊗ 1)|ψ〉
|(P ⊗ 1)|ψ〉| = (P ⊗ 1)|ψ〉√

〈ψ|(P ⊗ 1)2|ψ〉

= P |ψA〉 ⊗ |ψB〉√
〈ψ|(P ⊗ 1)2|ψ〉

= P |ψA〉 ⊗ |ψB〉√
〈ψ|(P 2 ⊗ 12)|ψ〉

= P |ψA〉 ⊗ |ψB〉√
〈ψA|P |ψA〉〈ψB|ψB〉

= P |ψA〉√
〈ψA|P |ψA〉

⊗ |ψB〉

Measurement of a subsystem in entangled state. For this case we will be a bit more
concrete, and directly see an example. Let us take the example of the two qubits in the entangled
state:

|ψ〉 = |00〉 − |11〉√
2

We measure only the first qubit using Z (i.e. the whole system using Z ⊗ 1):

Z = |0〉〈0| − |1〉〈1|

The probability of measuring |0〉 (or, more precisely, the label +1) is:

PA(0) = 〈ψ|(|0〉〈0| ⊗ 1)|ψ〉

12



= 〈00| − 〈11|√
2

(|0〉〈0| ⊗ 1) |00〉 − |11〉√
2

= 〈00|(|0〉〈0| ⊗ 1)− 〈11|(|0〉〈0| ⊗ 1)√
2

· |00〉 − |11〉√
2

= 〈0|0〉〈0| ⊗ 〈0| − 〈1|0〉〈0| ⊗ 〈1|√
2

· |00〉 − |11〉√
2

= 〈00|√
2
· |00〉 − |11〉√

2
= 1

2

by symmetry also the second qubit has probability 1
2 of being measured as 0. Suppose that we

measure the first qubit and it collapses to 0. The post-measurement state is:

|ψ′〉 = (|0〉〈0| ⊗ 1)|ψ〉√
〈ψ|(|0〉〈0| ⊗ 1)|ψ〉

=
√

2 · (|0〉〈0| ⊗ 1) |00〉 − |11〉√
2

= |00〉

while the first qubit collapsed to state 0, also the second qubit will now surely be 0 when
measured with respect to the computational basis. In some sense, |ψ〉 was telling us that the
two qubits still act like |−〉 when seen singularly, but measuring one of them also causes a
collapse in the state of the other one.

Observe that we could also perform a joint measurement of the two qubits via Z ⊗ Z, the
probabilities of the outcomes would not change (i.e. the post measurement states are |00〉 and
|11〉 with probability 1

2 and it thus can never be |01〉 or |10〉).

Computing the tensor product of two matrices. We end this section by looking at how
the observable Z ⊗ 1 actually looks like. First, notice that the projection operators are:

MAB = {|0〉〈0|A ⊗ 1B, |1〉〈1|A ⊗ 1B}

with labels +1 and −1, respectively. In order to see this, we again take advantage of the
properties of the tensor product:

Z ⊗ 1 = (|0〉〈0| − |1〉〈1|)⊗ (|0〉〈0|+ |1〉〈1|)
= |0〉〈0|A ⊗ |0〉〈0|B + |0〉〈0|A ⊗ |1〉〈1|B − |1〉〈1|A ⊗ |0〉〈0|B − |1〉〈1|A ⊗ |1〉〈1|B
= |00〉〈00|+ |01〉〈01| − |10〉〈10| − |11〉〈11|

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


and the matrix clearly shows its eigenspaces (since it is diagonal).
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Chapter 2
Position and Momentum
2.1 The momentum basis
Suppose to have a continuous Hilbert space H spanned by a basis {|x〉}x, which you can imagine
to be the position basis of a particle along an axis. A state |ψ〉 of a particle can be expressed as:

|ψ〉 = 1|ψ〉 =
(∫

R
|x〉〈x|dx

)
|ψ〉 =

∫
R
|x〉〈x|ψ〉dx =

∫
R
ψ(x)|x〉dx

Now assume to have another basis {|p〉}p of H. Following the same argument, we can express
|ψ〉 also as:

|ψ〉 =
∫
R
ψ̄(p)|p〉dx

For some wave function ψ̄(p) = 〈p|ψ〉, which will be different from ψ(x) in general. We now
choose a very particular basis here, i.e. the one that satisfies2:

〈x|p〉 = 1√
2π~
· eipx/~ =⇒ |p〉 = 1√

2π~

∫
R
eipx/~|x〉dx

Notice also that 〈p|x〉 = (〈x|p〉)† = 1√
2π~ · e

−ipx/~, and we can also write |x〉 in terms of the basis
|p〉 in a similar way:

|x〉 = 1√
2π~

∫
R
e−ipx/~|p〉dp

Theorem 2.1. {|p〉}p is an orthonormal basis for H.

Proof. We need to show that, given 〈x|x′〉 = δ(x− x′), we have 〈p|p′〉 = δ(p− p′). In fact:

〈p|p′〉 =
( 1√

2π~

∫
R
eipx/~|x〉dx

)† ( 1√
2π~

∫
R
eip
′x/~|x〉dx

)
= 1

2π~

(∫
R
e−ipx/~〈x|dx

)(∫
R
eip
′x/~|x〉dx

)
= 1

2π~

∫
R

∫
R
e−i(p

′x′−px)/~〈x|x′〉dxdx′

= 1
2π~

∫
R
e−ix(p′−p)/~dx = δ(p− p′)

where the last equality derives from the properties of the Dirac delta (Corollary A.9).

If we define the basis {|p〉}p in this way, what happens to ψ̄(p)? We find that:

ψ̄(p) = 〈p|ψ〉

= 〈p|
(∫

R
|x〉〈x|dx

)
|ψ〉

=
∫
R
〈p|x〉〈x|ψ〉dx

2It is also possible to find the definition of 〈x|p〉 with a minus sign in the exponential. The equation for
〈p|x〉 would then change accordingly. In the following we used a definition consistent with Schumacher and
Westmoreland [1].
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= 1√
2π~

∫
R
e−ipx/~ψ(x)dx

which is exactly the fourier transform of ψ(x). With the exact same argument we find that:

ψ(x) = 1√
2π~

∫
R
eipx/~ψ̄(p)dp

i.e. the inverse fourier transform of ψ̄(p). Later in this chapter we will see how in fact this
definition of momentum influences the speed, i.e. the derivative of 〈X〉.

2.2 The momentum operator
We already seen the position operator, i.e. its observable:

X =
∫
R
x|x〉〈x|dx

In a similar way, we can define the momentum operator:

P =
∫
R
p|p〉〈p|dp

Let us see what happens to the wave function ψ(x) when we apply the momentum operator:

〈x|P |ψ〉 = 〈x|
(∫

R
p|p〉〈p|dp

)
|ψ〉

=
∫
R
p〈x|p〉〈p|ψ〉dp

= 1√
2π~

∫
R
p · eipx/~ · ψ̄(p)dp

= 1√
2π~

∫
R

(~
i

∂

∂x
eipx/~

)
· ψ̄(p)dp

= −i~ ∂
∂x

( 1√
2π~

∫
R
eipx/~ · ψ̄(p)dp

)
= −i~ ∂

∂x
ψ(x)

Therefore, we usually write that P is an operator such that:

P : ψ(x)→ −i~ ∂
∂x
ψ(x)

Moreover, a way to write the expected momentum, which will be useful in certain cases, is:

〈P 〉 = 〈ψ|P |ψ〉

= 〈ψ|
(∫

R
|x〉〈x|dx

)
P |ψ〉

= 〈ψ|
(∫

R
|x〉〈x|dx

)
P |ψ〉

=
∫
R
〈ψ|x〉〈x|P |ψ〉dx

= −i~
∫
R
ψ∗(x) ∂

∂x
ψ(x)dx
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2.3 The position-momentum commutator
In this section we will compute [X,P ] and discuss the implications of the result. Let us start
by computing the wave function of the state XP |ψ〉:

〈x|XP |ψ〉 = (〈x|X)P |ψ〉
= (x〈x|)P |ψ〉 since |x〉 is an eigenstate of X

= −i~x ∂
∂x
ψ(x)

The computation of the other part of the commutator PX|ψ〉 is a bit less straightforward:

〈x|PX|ψ〉 = 〈x|P (X|ψ〉)

= 〈x|P
(∫

R
x|x〉〈x|ψ〉dx

)
= 〈x|P

(∫
R
x · ψ(x)|x〉dx

)
= 〈x|P |ψ′〉

here we are abusing the notation a little bit: notice that |ψ′〉 is not a valid state, since xψ(x) is
not normalized in general. However, it is useful to think of it as a state because now we know
immediately that, by the properties of P :

〈x|PX|ψ〉 = 〈x|P |ψ′〉

= −i~ ∂
∂x

(x · ψ(x))

= −i~x ∂
∂x
ψ(x)− i~ψ(x)

Putting the two results together we get:

〈x| (XP − PX) |ψ〉 = −i~x ∂
∂x
ψ(x) + i~x

∂

∂x
ψ(x) + i~ψ(x)

= i~ · ψ(x)

We just found that [X,P ] acts as:

[X,P ] : ψ(x)→ i~ · ψ(x)

Therefore [X,P ]|ψ〉 = i~|ψ〉 for every state |ψ〉, implying:

[X,P ] = i~1

This is called canonical commutation relation between position and momentum. What does this
mean? Recall that the derivative of the expected position 〈X〉 of a state changes according to
the commutator [X,H], where H is the Hamiltonian of the evolution. We will see later in this
chapter that the position operator P and the Hamiltonian are closely related to each other, in
a way that nicely resembles the total mechanical energy of a classical system.
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2.4 Transformation of observables in the commutator
We proved that [X,P ] = i~1, but what if we wanted to compute [f(X), P ], for some function
f? We will take advantage of the following simple result:

Theorem 2.2. The commutator [A,B] between two operators A,B is bilinear.

Proof. If we consider a linear combination on the left operator:

[a1A1 + a2A2, B] = (a1A1 + a2A2)B −B(a1A1 + a2A2)
= a1A1B + a2A2B − a1BA1 − a2BA2

= a1(A1B −BA1) + a2(A2B −BA2)
= a1[A1, B] + a2[A2, B]

The argument for a linear combination on the second operator is the same.

Now take the Taylor series of f :

f(X) =
∞∑
n=0

anX
n

By Theorem 2.2, we can rewrite [f(X), P ] as:

[f(X), P ] =
[ ∞∑
n=0

anX
n, P

]
=
∞∑
n=0

an[Xn, P ]

Thus all we’re left to do is compute [Xn, P ] for every n:

Theorem 2.3. [Xn, P ] = i~ · nXn−1

Proof. We prove this by induction: for n = 1 we already know that [X,P ] = i~1 = i~ ·X0. If
we assume the claim to be true for n− 1 we have:

[Xn, P ] = XnP − PXn

= Xn−1(XP )− PXn

= Xn−1(PX + i~1)− PXn since XP = PX + [X,P ]
= i~Xn−1 +Xn−1PX − PXn

= i~Xn−1 + [Xn−1, P ]X
= i~Xn−1 + i~ · (n− 1)Xn−2X by induction
= i~ · nXn−1

For a bit of intuition about this, you may notice that the expression of [Xn, P ] gives i~
times the “derivative of Xn with respect to X”, which aligns with the fact that P maps ψ(x) to
i~ · ∂∂xψ(x).

Now we are ready to plug this expression into our Taylor series.

[f(X), P ] =
∞∑
n=0

an[Xn, P ]
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= i~ ·
∞∑
n=0

annX
n−1

= i~ ·
∞∑
n=0

an
∂

∂X
(Xn)

= i~ · ∂
∂X

( ∞∑
n=0

anX
n

)

= i~
∂

∂X
f(X)

With an argument symmetric to the one we presented, it is also possible to prove the following:

[X, f(P )] = i~
∂

∂P
f(P )

2.5 Hamiltonian of a particle in one dimension
Consider a particle moving along the x-axis. The general Hamiltonian for a particle of (real and
constant) mass µ is:

H = P 2

2µ + V (X)

Recall that the Hamiltonian is the observable for the total energy of the system. Here we are
decomposing the total energy in a classical way:

• The first term indicates the kinetic energy, where P is the momentum operator, i.e. the
observable of the momentum of the particle. This term should not be a surprise: in
classical physics, a body of mass m and speed v has a total kinetic energy of:

EK = 1
2mv

2 = 1
2m(mv)2 = p2

2m

• The second term is a symmetry called potential energy. As you may recall from classical
physics courses, the potential energy is a quantity of energy due to the position of the body
in a space containing a (conservative) force field. Classical examples are gravitational and
electrical fields.

2.6 Evolution of an observable: Ehrenfest’s theorem
For an observable A we already saw that, in order to analyze the derivative of 〈A〉, we need
[A,H], where H is the Hamiltonian of the observed system. Therefore:

[A,H] = 1
2µ
[
A,P 2

]
+ [A, V (X)]

which is extremely neat, since usually the observables we work with either depend on X or P
(and thus one of the two terms vanishes). Let us see some examples, starting from [X,H]:

[X,H] = 1
2µ
[
X,P 2

]
+ [X,V (X)]
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Notice that [X,V (X)] = 0 since V (X) can be expressed as a Taylor series involving [X,Xn],
which are all zero (why?). Thus, we are only left with:

[X,H] = 1
2µ [X,P 2] = i~

1
2µ2P = i~

P

µ

This gives a relation between the momentum of the particle as we defined it, and its speed,
finally aligning our definition from the classical meaning of linear momentum.

Theorem 2.4 (Ehrenfest’s Theorem I). The derivative of the expected position of a particle is
its expected speed, i.e. the expected momentum over its mass:

∂

∂t
〈X〉 = 1

µ
〈P 〉

Proof.
∂

∂t
〈X〉 = 1

i~
〈ψ|[X,H]|ψ〉 = 1

i~
〈ψ|

(
i~ · P

µ

)
|ψ〉 = 1

µ
〈ψ|P |ψ〉 = 1

µ
〈P 〉

Let us now work with [P,H]:

[P,H] = 1
2µ [P, P 2] + [P, V (X)] = [P, V (X)] = i~

∂

∂X
V (X)

this leads to a result which closely resembles the second principle of classical dynamics:

Theorem 2.5 (Ehrenfest’s Theorem II). The derivative of the expected momentum of a particle
is the total external force acting on it, i.e. the spatial derivative of the potential.

∂

∂t
〈P 〉 = −〈 ∂

∂X
V (X)〉

Proof.
∂

∂t
〈P 〉 = 1

i~
〈ψ|[P,H]|ψ〉 = 1

i~
〈ψ|

(
−i~ · ∂

∂X
V (X)

)
|ψ〉 = −〈 ∂

∂X
V (X)〉

These theorems more closely resemble their classical counterpart when we are in 2 or 3
dimensions and these actually are written in vector form. We will see how to generalize our
formalization to more dimensions later.

2.7 Schrödinger equation for a free particle
We have a free particle when no external force is applied, i.e. V (x) = 0 and H = P 2

2µ . With a
similar argument as the one for P given in Section 2.2, P 2 acts on a state |ψ〉 in the following
way:

P 2 : ψ(x)→ (−i~)2 ∂
2

∂x2ψ(x) = −~2 ∂
2

∂x2ψ(x)

Therefore we can multiply the Schrödinger equation we know with 〈x| in order to derive the one
for the wave function:

P 2

2µ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉
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1
2µ〈x|P

2|ψ(t)〉 = i~
∂

∂t
〈x|ψ(t)〉

− ~2

2µ
∂2

∂x2ψ(x, t) = i~
∂

∂t
ψ(x, t)

On the other hand, in order to solve the Schrödinger equation in this case, it may be useful to
work in the momentum basis, since only the momentum operator appears. Hence let us try to
multiply by 〈p|:

P 2

2µ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉

1
2µ〈p|P

2|ψ(t)〉 = i~
∂

∂t
〈p|ψ(t)〉

p2

2µψ̄(p) = i~
∂

∂t
ψ̄(p)

and this is a simple homogeneous differential equation with solution:

ψ̄(p, t) = ψ̄(p, 0) · e−
ip2t
2µ~

Finally, in order to find ψ(x, t) we can simply apply an inverse Fourier transform to this solution.
In general, it is a good idea to:

• Start with the initial state ψ(x, 0);

• Transform ψ(x, 0)→ ψ̄(p, 0);

• Evolve the state in the momentum basis;

• Apply the inverse Fourier transform to find the evolution in the position basis.

Stationary states. Recall that a stationary state is an eigenstate of the Hamiltonian and only
their global phase changes over time. We can derive the same conclusion for the wave function
of stationary states:

|ψ(t)〉 = e−iEkt/~|ψ(0)〉
〈x|ψ(t)〉 = e−iEkt/~〈x|ψ(0)〉
ψ(x, t) = e−iEkt/~ψ(x, 0)

Finding the stationary states of a Hamiltonian is a very important problem in many branches
of science, from chemistry to pharmacy, and one of the main promises of quantum computation
is to be able to compute them in feasible time.
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Chapter 3
Modeling Uncertainty
3.1 Information in quantum mechanics
Suppose that, for some reason, we do not know exactly which quantum state we have (in a
closed box, say), but we nonetheless want to have a mathematical object that helps us describe
the (partial) information we have about this state.

For this purpose, we model this uncertainty with a black box B, which gives us some state
|ψi〉 with probability pi. If (Ω,F ,Pψi) is the probability space induced by |ψi〉, we would like to
have a probability space for B in such a way that:

• this representation gives us the true distribution of an outcome x which is, by the law of
total probability:

P (x)B =
∑
i

piP (x)i

• after a unitary evolution U , this distribution remains consistent with what happened:

P (x)U(B) =
∑
i

piP (x)U(ψi)

where (Ω,F ,PU(ψi)) is the probability space induced by U |ψi〉.

Let us also talk about measurements: if we have an observable O of the form

O =
∑
x

λxΠx

then the probability of measuring x is:

P (x)ψ = 〈ψ|Πx|ψ〉

as we already know.
Let us now introduce an operator we know from linear algebra: the trace. The trace of a

matrix A can be simply seen as the sum of the elements in the diagonal of A. Another way to
define it is:

Tr(A) =
∑
k

〈k|A|k〉

where {|k〉}k is an orthonormal basis of the Hilbert space in which A is an endomorphism. The
trace operator can also be extended to continuous operators:

Tr(A) =
∫
R
〈x|A|x〉dx

Now we can rewrite the outcome probability in an interesting way:

P (x)ψ = 〈ψ|Πx|ψ〉
= Tr (〈ψ|Πx|ψ〉) every scalar is the trace of itself
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= Tr (Πx|ψ〉〈ψ|) by cyclic property (Theorem B.2)

Another way to prove that the probability of an outcome is given by the above trace is the
following: let us choose an orthonormal basis {|ψj〉}j to express the operator A (and its trace),
where |ψ1〉 = |ψ〉 is our state.

Tr (Πx|ψ〉〈ψ|) =
∑
j

〈ψj |Πx|ψ〉〈ψ|ψj〉

= 〈ψ|Πx|ψ〉 = P (x)ψ
Other useful properties of the trace can be found in Section B.1.

3.2 The density matrix
We introduced a fancy use of the trace operator, but we did not solve our problem yet: how can
we conveniently describe B? Let us look at the total probability again now:

P (x)B =
∑
i

piP (x)i

=
∑
i

pi〈ψi|Πx|ψi〉

=
∑
i

pi Tr (Πx|ψi〉〈ψi|)

= Tr
(∑

i

piΠx|ψi〉〈ψi|
)

linearity of trace

= Tr
(

Πx

∑
i

pi|ψi〉〈ψi|
)

=: Tr (Πxρ)

We found that the total probability can be written as the trace of a product between two
matrices: the projector operator relative to the outcome of the measurement Πx, and a new
matrix ρ, which we call the density matrix3. Notice that by “density” here we mean probability
density. Also keep in mind that we tacitly assumed that the probability distribution of the
states returned by the black box B is discrete, but nothing prevents us to define the same black
box for continuous distributions, in which the density matrix will be defined with an integral
sum. Moreover, this matrix does not necessarily have to be unitary (it does not even have to be
invertible), since the possible states |ψi〉 are not orthonormal in general.

Evolving a distribution. Suppose we apply a unitary evolution U to whichever state B will
give us. At the end we will have a set of states {|ψ′i〉}i, where |ψ′i〉 = U |ψi〉. The total probability
will become:

P (x)U(B) =
∑
i

piP (x)U(ψi)

=
∑
i

pi Tr
(
Πx|ψ′i〉〈ψ′i|

)
=
∑
i

pi Tr
(
ΠxU |ψi〉〈ψi|U †

)
3This is also called density operator, this again depends on the system we model. Since in this chapter we

will mainly talk about qubits, we will use the term matrix.

22



= Tr
(∑

i

piΠxU |ψi〉〈ψi|U †
)

linearity of trace

= Tr
(

ΠxU

(∑
i

pi|ψi〉〈ψi|
)
U †
)

= Tr
(
ΠxUρU

†
)

We found that a mixture of states with density matrix ρ, after a unitary evolution U , becomes
a mixture of states with density matrix UρU †.

Post-measurement states. The argument for the measurements does not work only with
unitary operators, but with Hermitian operators in general: this gives us an expression for the
post-measurement state for free. If we observe the subspace of a projector Πk upon measurement,
the projector will transform ρ 7→ ΠkρΠ†k and then, analogously to what we do with normal states,
we will need to normalize (Tr ρ′ = 1, see next section):

ρ 7→
ΠkρΠ†k

Tr(ΠkρΠk)

= ΠkρΠk

Tr(ΠkρΠk)
projector is Hermitian

= ΠkρΠk

Tr(Π2
kρ) cyclic property of trace

= ΠkρΠk

Tr(Πkρ) projector is idempotent

= ΠkρΠk

P (k)ρ

Expectation. Given an observable A = ∑
k ak|k〉〈k|, with {|k〉}k orthonormal basis, we can

also find a neat expression for the expectation of an observable A under a given state ρ:

〈A〉ρ =
∑
k

akP (k)ρ

=
∑
k

ak Tr (|k〉〈k|ρ)

= Tr
(∑

k

ak|k〉〈k|ρ
)

linearity of trace

= Tr (Aρ)

Examples with qubits. Suppose that the black box B1 returns a qubit with states |0〉 or |1〉
uniformly at random, i.e. with probability 1

2 each. The density matrix ρ1 of this distribution is:

ρ1 = 1
2 |0〉〈0|+

1
2 |1〉〈1| =

1
21

Now consider a black box B2 returns a qubit with states |+〉 or |−〉 uniformly at random. The
density matrix ρ2 is:

ρ = 1
2 (|+〉〈+|+ |−〉〈−|) = 1

21
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We obtained the same density matrix. This means that in practice we cannot distinguish B1
and B2, even after an arbitrary evolution U since U1U † = 1, i.e. the density matrix does not
change upon evolution. This property of quantum information is quite unique, and sets an
important difference from classical information: clearly |+〉, |−〉 are different from |0〉, |1〉, yet it
is impossible to tell the two cases apart.

3.3 Properties of the density matrix
Let us analyze ρ, and derive some properties. First of all, we notice that ρ can be seen an
endomorphism of the Hilbert space H containing the states |ψi〉 in the mixture.

Theorem 3.1. Tr(ρ) = 1.

Proof. Let {|ψi〉}i be the set of possible states with mixing probabilities pi.

Tr(ρ) = Tr
(∑

i

pi|ψi〉〈ψi|
)

=
∑
i

Tr (pi|ψi〉〈ψi|) linearity of trace

=
∑
i

Tr (pi〈ψi|ψi〉) cyclic property of trace

=
∑
i

pi = 1

Theorem 3.2. ρ is Hermitian.

Proof.

ρ† =
(∑

i

pi|ψi〉〈ψi|
)†

=
∑
i

pi(|ψi〉〈ψi|)† =
∑
i

pi|ψi〉〈ψi| = ρ

Theorem 3.3. ρ is positive semi-definite.

Proof. For any |φ〉 in H:

〈φ|ρ|φ〉 =
∑
i

pi〈φ|ψi〉〈ψi|φ〉

=
∑
i

pi|〈ψi|φ〉|2

≥ 0

These properties tell us something important about the spectral decomposition of ρ: Theo-
rem 3.2 ensures that the eigenbasis of ρ is orthonormal, which is a property we always appreciate
in quantum theory. Theorems 3.1 and 3.3 tell us something about its eigenvalues: positive semi-
definiteness implies that the eigenvalues are all non-negative while, on the other hand, the sum
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of the eigenvalues of a matrix always equals the trace, which in our case is 1. The eigendecom-
position seems to yield a probability mixture of new states:

ρ = UDU † =
∑
x

P (x)x |ψx〉〈ψx|

where D is diagonal, {|ψx〉} forms a orthonormal basis of H, and Px is the probability induced
by |ψx〉. Just like in the example with qubits we have introduced in Section 3.2, if we construct a
black box B′ using the eigenbasis of ρ as probability mixture, we would obtain a total probability
that is indistinguishable from the original (ρ did not change after all).

We present here two important special cases:

• if ρ = |φ〉〈φ|, meaning that the mixture yields |φ〉 with probability 1, we call such mixture
pure state;

• if ρ = 1

|H|
4, the distribution will be uniform among the states in H, and this corresponds

to what we call fully mixed state.

From now on we will extend the term “state” also to refer to such distributions. Moreover, we
will denote with S(H) ⊆ End(H) the space of density matrices in the Hilbert space H.

3.4 Ignorance about local information and the partial trace
Consider an example where we have a state ρAB ∈ S(HA⊗HB) shared by two players, Alice and
Bob. Alice has only access to HA, and Bob only to HB (you can imagine two qubits A,B). We
would like to represent the knowledge that only one of the players has about the global system.

Definition 3.4 (Partial trace). Given a composite system HA ⊗ HB, the partial trace with
respect to HA is a function

TrB : S(HA ⊗HB) 7→ S(HA)
ρAB 7→ ρA

i.e. it yields the density matrix of the subsystem A, given the density matrix of the global system.

Let us derive a general expression that we can use. We know that the partial trace above
must satisfy the following conditions:

• A local measurement on HA (i.e. an observable of the form MA ⊗ 1B) must behave with
the correct outcome probability distribution;

• A local evolution on HB should not change the value of the partial trace.

Local observables. Suppose to have an observable O = MA ⊗ 1B, as anticipated, where
M = ∑

x axΠx, with Πx = |x〉〈x|. The property we described above should translate to the
following constraint in the induced probability spaces:

P (x)ρA = P (x)ρAB
which, rewritten in terms of traces becomes:

Tr (ΠxρA) = Tr ((Πx ⊗ 1B)ρAB)
4Although this is an extreme abuse of notation, you can imagine that this also works if H is infinite-dimensional.
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Let us now choose an orthonormal basis {|i〉A|j〉B}i,j of HA ⊗HB which we use to express the
trace:

Tr ((Πx ⊗ 1B)ρAB) =
∑
i,j

〈i|〈j| ((Πx ⊗ 1B)ρAB) |i〉|j〉

=
∑
i,j

(〈i|Πx)⊗ (〈j|1B) ρAB|i〉|j〉

We are going to choose {|i〉} = {|x〉}, since we could choose any orthonormal basis to define the
trace.

Tr ((Πx ⊗ 1B)ρAB) =
∑
i,j

(〈i|x〉〈x|)⊗ (〈j|1B) ρAB|i〉|j〉

=
∑
j

(〈x|A〈j|B) ρAB (|x〉A|j〉B)

= 〈x|

∑
j

(1A ⊗ 〈j|B) ρAB (1A ⊗ |j〉B)

 |x〉
Notice that the matrix in the sum is in S(HA) and in fact, under the assumption that Πx

projects onto a single basis element |x〉, what we have within the tuples is exactly ρA since:

Tr(|x〉〈x|ρA) = Tr(〈x|ρA|x〉) = 〈x|ρA|x〉

as in the above expression.
Therefore, a good candidate for the definition of the partial trace can be:

TrB(ρAB) :=
∑
j

(1A ⊗ 〈j|B) ρAB (1A ⊗ |j〉B)

Since the trace is a linear operator we can use the following notation:

TrB(ρAB) := (1A ⊗ TrB) ρAB

Local evolutions. We still need to prove that the definition we found is independent from
possible evolutions in HB. Suppose we evolve the two systems independently with an operator
(UA ⊗ VB). We already proved that the density matrix becomes:

ρAB 7→ ρ′AB = (UA ⊗ VB)ρAB(U †A ⊗ V
†
B)

Let us see what happens to the partial trace with our definition:

TrB(ρ′AB) = TrB
(
(UA ⊗ VB)ρAB(U †A ⊗ V

†
B)
)

=
∑
j

(1A ⊗ 〈j|B) (UA ⊗ VB)ρAB(U †A ⊗ V
†
B) (1A ⊗ |j〉B)

=
∑
j

(UA ⊗ 〈j|BVB) ρAB
(
U †A ⊗ V

†
B|j〉B

)
Now we simply do a change of basis |j〉 ← V |j〉 (note that it is still an orthonormal basis since
V is unitary). We know that the trace is independent of the basis and:

TrB(ρ′AB) =
∑
j

(UA ⊗ 〈j|B) ρAB
(
U †A ⊗ |j〉B

)
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= U

∑
j

(1A ⊗ 〈j|B) ρAB (1A ⊗ |j〉B)

U †
= UρAU

†

which means that a local evolution in B does not change anything on the partial trace, exactly
what we wanted. This confirms that the definition we found was exactly what we were looking
for. It is worth noticing that in order to find ρ′A = UρAU

†, one can either evolve the partial
trace TrB(ρAB), or compute the partial trace on the evolved state TrB(ρ′AB), i.e.

TrB
(
(UA ⊗ VB)ρAB(U †A ⊗ V

†
B)
)

= U TrB(ρAB)U †

We close this section by showing two properties of the partial trace, which will be useful
later:

Theorem 3.5 (Linearity of partial trace). TrB(αρ1 + βρ2) = αTrB(ρ1) + β TrB(ρ2).

Proof.

TrB(αρ1 + βρ2) =
∑
j

(1A ⊗ 〈j|B) (αρ1 + βρ2) (1A ⊗ |j〉B)

=
∑
j

(1A ⊗ 〈j|B) (αρ1) (1A ⊗ |j〉B) +
∑
j

(1A ⊗ 〈j|B) (βρ2) (1A ⊗ |j〉B)

= α
∑
j

(1A ⊗ 〈j|B) ρ1 (1A ⊗ |j〉B) + β
∑
j

(1A ⊗ 〈j|B) ρ2 (1A ⊗ |j〉B)

= αTrB(ρ1) + β TrB(ρ2)

Theorem 3.6. TrB(ρA ⊗ ρB) = ρA.

Proof.

TrB(ρA ⊗ ρB) =
∑
j

(1A ⊗ 〈j|B) (ρA ⊗ ρB) (1A ⊗ |j〉B)

=
∑
j

(ρA ⊗ 〈j|BρB) (1A ⊗ |j〉B)

=
∑
j

(ρA ⊗ 〈j|BρB) (1A ⊗ |j〉B)

= ρA
∑
j

〈j|ρB|j〉

= ρA Tr(ρB) = ρA by Theorem 3.1

3.5 Superposition vs probabilistic mixture
In this section we want to evidence an important difference between a qubit in a superposition
and a bit chosen uniformly at random. Consider two different states:

• ρ1 yields |+〉 = |0〉+|1〉√
2 with probability 1;

• ρ2 gives one of |0〉, |1〉 uniformly at random.
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Analysis of the superposition. Let us start by analyzing ρ1: its density matrix can be
computed directly using Dirac notation:

ρ1 = |+〉〈+|

= 1
2(|0〉+ |1〉)(〈0|+ 〈1|)

= 1
2(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

= 1
2

(
1 1
1 1

)

Notice that ρ1, like any density matrix of a pure state, is idempotent:

ρ2
1 = (|+〉〈+|)(|+〉〈+|) = |+〉〈+|+〉〈+| = |+〉〈+| = ρ1

This is a good way to check whether a density matrix (expressed in vector notation, say) corre-
sponds to a pure state or not.

Now let us compute the outcome probabilities when we measure ρ1:

• Using the Pauli matrix Z:

P (0)ρ1
= Tr (|0〉〈0|ρ1)
= Tr (|0〉〈0|+〉〈+|)

= Tr
(

1
2

(
1 0
0 0

)(
1 1
1 1

))

= 1
2 Tr

(
1 0
0 0

)
= 1

2 = P (1)ρ1

• Using the Pauli matrix X:

P (+)ρ1
= Tr (|+〉〈+|ρ1)
= Tr (|+〉〈+|+〉〈+|)

= 1
2 Tr

(
1 1
1 1

)
= 1

It is worth mentioning that nobody forces us to compute the trace using matrix notation.
Sometimes it may be even faster to use Dirac notation and take advantage of the linearity of
trace.

Now let us consider an example of evolution of ρ1: we make the qubit pass through a
Hadamard gate H. The state after the transformation is:

ρ1 7→ Hρ1H
† = |0〉〈0|

i.e. the state will be |0〉 with probability 1, which totally makes sense, since H always transform
|+〉 to |0〉.
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Analysis of the probabilistic mixture. We immediately see the first difference by comput-
ing the density matrix:

ρ2 = 1
2 |0〉〈0|+

1
2 |1〉〈1| =

1
21

And it is clearly not a pure state:

ρ2
2 = 1

41 6= ρ2

Indeed, let us see what happens with a measurement here:

• with the Pauli matrix Z:

P (0)ρ2
= Tr (|0〉〈0|ρ2)

= 1
2 Tr (|0〉〈0|1)

= 1
2 Tr

(
1 0
0 0

)
= 1

2

• Using the Pauli matrix X:

P (+)ρ2
= Tr (|+〉〈+|ρ2)

= 1
2 Tr (|+〉〈+|1)

= 1
2 Tr

(
1
2

1
2

1
2

1
2

)
= 1

2

Moreover, any evolution of ρ2 does not change any information we have about a fully mixed
state:

ρ2 7→ Uρ2U
† = 1

2U1U
† = 1

21 = ρ2

From these we can infer a different characterization of a fully mixed state.

Theorem 3.7. A state ρ ∈ S(H) is fully mixed if and only if the probability distribution of
outcomes is uniform for any chosen measurement basis.

On the other hand, we have already seen in Section 1.4 that the notion of superposition is
relative to a particular measurement basis, and thus there exists a basis (indeed, infinitely many)
in which the outcome is deterministic. This is why we called this type of density matrices pure
state.

3.6 Entanglement vs probabilistic mixture
We will see now how entanglement behaves with this new formalization, and we will see three
example cases.

29



Pure entangled state. Let us now consider the density matrix ρAB ∈ S(HA ⊗ HB) of two
qubits, and suppose it gives a pure state:

ρAB = |ψ〉〈ψ|AB

where |ψ〉 is the entangled state 1√
2(|00〉+ |11〉). We rewrite ρAB:

ρAB = 1
2 (|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

= 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


What happens now if we take the partial trace?

ρA = TrB(ρAB)

= 1
2 (TrB(|00〉〈00|) + TrB(|00〉〈11|) + TrB(|11〉〈00|) + TrB(|11〉〈11|))

= 1
2
∑
j

(1A ⊗ 〈j|B) ρAB (1A ⊗ |j〉B)

Now notice that TrB(|00〉〈11|) = TrB(|11〉〈00|) = 0, since in the terms of the sum 〈j|0〉〈1|j〉 or
〈j|1〉〈0|j〉 will appear; if we choose a basis {|j〉} containing |0〉, |1〉, all these terms cancel out
since at most one of |0〉, |1〉 can be equal to |j〉. Thus we are left with:

ρA = 1
2 Tr (|00〉〈00|+ |11〉〈11|)

= 1
2

∑
j

(1A ⊗ 〈j|B) |00〉〈00| (1A ⊗ |j〉B) +
∑
j

(1A ⊗ 〈j|B) |11〉〈11| (1A ⊗ |j〉B)


= 1

2

∑
j

(|0〉A ⊗ 〈j|0〉B) (〈0|A ⊗ 〈0|j〉B) +
∑
j

(|1〉A ⊗ 〈j|1〉B) (〈1|A ⊗ 〈1|j〉B)


= 1

2 (|0〉〈0|A + |1〉〈1|A) = 1
21A

i.e. if we have an entangled pure state globally, then locally we get a mixed state. While this
is somewhat counter-intuitive (a global superposition is giving a local mixture after all), keep
in mind that having a locally pure state would mean that the global state could be written as
tensor product of local states, which falls in contradiction with the fact that |ψ〉 is entangled.

Classical correlation. Now suppose that ρAB gives us one of |00〉, |11〉 uniformly at random,
i.e.

ρAB = 1
2 |00〉〈00|+ 1

2 |11〉〈11|

= 1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
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This is what we call classical correlation, because the two qubits are correlated in the sense of
probability theory. The partial trace TrB(ρAB) is the same as in the previous case, because we
only lack the terms |00〉〈11|, |11〉〈00|, which canceled out anyway in the computations above:

ρA = TrB(ρAB)

= 1
2 (|0〉〈0|A + |1〉〈1|A) = 1

21A

i.e. only looking at the first qubit gives us a random bit. We found that the two cases are locally
indistinguishable: we cannot tell if two qubits are entangled or only classically correlated if we
only have access to one of them, but the situation can get worse.

Local mixtures. In this case, we have two completely unentangled qubits in fully mixed state:

ρAB = ρA ⊗ ρB = 1
21A ⊗

1
21B = 1

41AB = 1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


By Theorem 3.6, also in this case the partial trace becomes:

TrB (ρA ⊗ ρB) = ρA = 1
21A

Let us see which post-measurement states we get by measuring in the following three different
bases, namely,

• with ZA ⊗ ZB, i.e. the computational basis:

{|0〉, |1〉} ⊗ {|0〉, |1〉} = {|00〉, |01〉, |10〉, |11〉}

• with XA ⊗XB, i.e. the Hadamard basis:

{|+〉, |−〉} ⊗ {|+〉, |−〉} = {|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉}

• with B, i.e. the Bell basis:{
|Φ+〉, |Ψ+〉, |Φ−〉, |Ψ−〉

}
=
{ |00〉+ |11〉√

2
,
|01〉+ |10〉√

2
,
|00〉 − |11〉√

2
,
|01〉 − |10〉√

2

}

ZA ⊗ ZB XA ⊗XB B

Pure entangled |00〉, |11〉 u.a.r. |+〉|+〉, |−〉|−〉 u.a.r. |Φ+〉

Classical correlation |00〉, |11〉 u.a.r. any basis state u.a.r. |Φ+〉, |Φ−〉 u.a.r.

Local mixtures any basis state u.a.r. any basis state u.a.r. any basis state u.a.r.

Notice that these measurements can actually distinguish the three cases (the distribution is
different, a statistical test is sufficient), but they are not local measurements.

31



3.7 Uncertainty about evolution
In the previous sections we formalized the concept of density matrix, in order to describe a
system for which we do not completely know the state. Now we want to address the case in
which we are uncertain about the evolution. We model this in an analogous way: we have a
black box B just as before, returning a state ρ. Moreover, we have another black box E which
takes ρ as input, and returns the evolved state. Thus, if we were certain about the evolution,
i.e. we know it is a unitary operator U , we would already know what the evolved state would
look like:

E : ρ 7→ UρU †

On the other hand, if we suppose that E evolves the input state using operator Ui with probability
pi, then we can use the law of total probability:

E : ρ 7→ E(ρ) =
∑
i

pi · UiρU †i

A different way to express uncertainty about evolution is to introduce a state σE , which in
some sense represents the state of the environment, and then evolve the state ρ ⊗ σE with a
known evolution operator U :

E : ρ 7→ E(ρ) =
(
UAE(ρ⊗ σE)U †AE

)
In this second representation, the uncertainty about the evolution lies in what we do not know
about the environment, while the evolution itself is well-known. It is important to note that the
transformations defined above are, in general, non-reversible, i.e. they are not invertible.

How can we define a model for a general case that takes into account both the definitions
above? We would like such a map to be:

• linear: this is because we want in particular that:

E
(∑

i

piρi

)
=
∑
i

piE(ρi)

since we can always express a state as mixture of other states, and this would keep the
probabilities consistent with the evolution;

• trace-preserving: Tr(ρ) = Tr(E(ρ)), in order for the new state E(ρ) to preserve Theorem
3.1 and thus still be expressed as probabilistic mixture;

• completely positive: the new state E(ρ) must also preserve Theorem 3.3, i.e must remain
positive semi-definite. This must be true also if we apply E to a subsystem:

ρAB < 0 =⇒ (EA ⊗ 1B) (ρAB) < 0

Thus, we formalize the concept of uncertain evolution with a mapping:

EA 7→B : S(HA) 7→ S(HB)

satisfying the three properties we mentioned. Notice that the Hilbert space changes because
we also use it to model transformations from a system to another. These maps are called
(non-ironically) trace-preserving completely positive maps (or TPCPM). Quantum channels is
another very popular term we will use.
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3.8 Kraus decomposition
We present here the first representation of TPCPMs, generalizing the idea of total probability
presented in the previous section. It is called operator-sum (or Kraus) decomposition:

E(ρ) =
∑
k

EkρE
†
k, where

∑
k

E†kEk = 1A

and {Ek}k are called Kraus operators. Linearity comes natural, so let us see if it satisfies the
other conditions.

Theorem 3.8. The Kraus decomposition preserves the trace.

Proof.

Tr
(∑

k

EkρE
†
k

)
=
∑
k

Tr
(
EkρE

†
k

)
linearity of trace

=
∑
k

Tr
(
ρE†kEk

)
cyclic property of trace

= Tr
(
ρ
∑
k

E†kEk

)
= Tr (ρ) since

∑
k

E†kEk = 1A

Theorem 3.9. The Kraus decomposition is completely positive.

Proof. Considering ρ = ∑
i pi|ψi〉〈ψi| < 0:

∑
k

EkρE
†
k =

∑
k

Ek

(∑
i

pi|ψi〉〈ψi|
)
E†k

=
∑
i

pi
∑
k

Ek|ψi〉〈ψi|E†k

One can see that ∑k |ψi,k〉〈ψi,k| is a sum of outer products Ek|ψ〉(Ek|ψ〉)†, which is positive
semi-definite by Theorems B.23 and B.24. Therefore, for any vector |φ〉, and since pi ≥ 0:

〈φ|
(∑

i

pi
∑
k

Ek|ψi〉〈ψi|E†k

)
|φ〉 =

∑
i

pi〈φ|
(∑

k

Ek|ψi〉〈ψi|E†k

)
|φ〉 ≥ 0

Moreover, if we suppose to have a state in a composite system ρAE = ∑
i pi|ψi〉〈ψi|:

(EA 7→B ⊗ 1E)(ρAE) =
∑
k

(Ek ⊗ 1E)ρAE(E†k ⊗ 1E)

=
∑
i

pi

(∑
k

(Ek ⊗ 1E)|ψi〉〈ψi|(Ek ⊗ 1E)†
)

just like in the single-system case, we have a sum of outer products, and the result remains
positive semi-definite with the same argument.

Let us see some examples with the Kraus decomposition:
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• A unitary map is indeed a special case of Kraus decomposition

E(ρ) = UρU †, U †U = 1

• Erasure channel: maps every state to a fixed state ρA 7→ |ψ〉B
E(ρ) =

∑
k

|ψ〉〈k|ρ|k〉〈ψ|

for an orthonormal basis {|k〉}k of HA. One can see that this indeed gives us a pure state:

E(ρ) =
∑
k

|ψ〉〈k|ρ|k〉〈ψ|

=
∑
k

〈k|ρ|k〉|ψ〉〈ψ|

= |ψ〉〈ψ|
∑
k

〈k|ρ|k〉

= |ψ〉〈ψ|Tr(ρ) = |ψ〉〈ψ|

moreover,
∑
k E
†
kEk = ∑

k |k〉〈ψ|ψ〉〈k| =
∑
k |k〉〈k| = 1, since |ψ〉 is normalized and {|k〉}

is an orthonormal basis.

• White noise (depolarizing channel): this channel introduces noise with some probability p

E(ρ) = (1− p)ρ+ p
1

2
With “introducing noise” we mean that the state becomes a fully mixed state (the 2 is
because we are assuming that this is a qubit, but it can be generalized to arbitrary state
spaces), losing the information ρ we had. Extracting the Kraus operators requires some
more effort, but in the end one can find:

E1 =
√

1− 3p
4 1, E2 =

√
p

4X, E3 =
√
p

4Y, E4 =
√
p

4Z

We conclude the section by mentioning that the Kraus decomposition, just like the decomposition
of a density matrix, is not always unique.

3.9 Stinespring dilation
Here we present a different and more intuitive way to represent an uncertain evolution, based
on the environment representation we anticipated.

E(ρA)⊗ |x〉E′ = UAE(ρA ⊗ |0〉〈0|E)U †AE
here |0〉E represents the initial state of the environment, called ancillary state.

We have an initial state space HA ⊗HE and a final state space HB ⊗HE′ , such that they
are isomorphic. If we talk about qubits, one can imagine this constraint as having the same
number of qubits both in input and output to the circuit. Note that the evolution written above
is still a reversible, unitary evolution we are already familiar with. We can define the mapping
as follows:

EA 7→B(ρA) = TrE′
(
UAE(ρA ⊗ |0〉〈0|E)U †AE

)
= TrE′

(
UAE(1A ⊗ |0〉E)ρA(1A ⊗ 〈0|E)U †AE

)
=: TrE′

(
V ρAV

†
)

where V = UAE(1A ⊗ |0〉E) is an isometry from HA to HB ⊗HE′ .
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From Stinespring dilation to Kraus decomposition. Let us discuss the equivalence be-
tween the two representations we obtained. We rewrite the isometry V as follows:

V =
∑
k

Ek ⊗ |k〉E

where {|k〉}k is an orthonormal basis for HE . With this expression, we obtain from the fact that
V †V = 1

5:

1A = V †V

=
∑
k,`

(E†k ⊗ 〈k|)(E` ⊗ |`〉)

=
∑
k,`

E†kE`〈k|`〉

=
∑
k

E†kEk

i.e. Ek are valid Kraus operators. Now let us take the partial trace:

E(ρA) = TrE′(V ρAV †)

= TrE′
((∑

k

Ek ⊗ |k〉E

)
ρA

(∑
`

E†k ⊗ 〈`|E

))

= TrE′

∑
k,`

EkρAE
†
` ⊗ |k〉〈`|E


=
∑
j

(1A ⊗ 〈j|)

∑
k,`

EkρAE
†
` ⊗ |k〉〈`|E

 (1A ⊗ |j〉)

=
∑
j,k,`

EkρAE
†
` 〈j|k〉〈`|j〉

=
∑
k

EkρAE
†
k

which is exactly a Kraus decomposition. This derivation also gives a reason why the Kraus
decomposition is not unique: we know that the partial trace here gives us only information
about local states, hence different global evolutions can lead to the same local effect, while
yielding possibly different Kraus representations. This is something we saw indirectly in Section
5.1, when we showed how a global evolution could be written in a different way, exploiting the
linearity of the tensor product.

3.10 Example with CNOT gate
We see here a simple example of quantum channel, with a global reversible operation we know:
the CNOT.

ρA E(ρA)

|0〉〈0|E

5Remember that, for an isometry, it holds that ||V x||2 = ||x||2, implying V †V = 1. If the isometry is unitary,
then also V V † = 1 holds.
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Notice that HA ≡ HB,HE ≡ HE′ . The evolution is given by the CNOT gate:

U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


If the first qubit is in state:

ρA =
1∑
i=0

1∑
j=0

cij |i〉〈j| =
(
c00 c01
c10 c11

)

The total input of the circuit is:

ρAE = ρA ⊗ |0〉〈0|E =
1∑
i=0

1∑
j=0

cij |i〉〈j|A ⊗ |0〉〈0|E

=
(
c00 c01
c10 c11

)
⊗
(

1 0
0 0

)
=


c00 0 c10 0
0 0 0 0
c01 0 c11 0
0 0 0 0


After some calculations we get that the evolved state is:

UρAEU
† =


c00 0 0 c10
0 0 0 0
0 0 0 0
c01 0 0 c11

 =
1∑
i=0

1∑
j=0

cij |ii〉〈jj| =
1∑
i=0

1∑
j=0

cij |i〉〈j| ⊗ |i〉〈j|

and finally, we take the partial trace:

E(ρA) = TrE′
(
U(ρA ⊗ |0〉〈0|)U †

)
= TrE′

 1∑
i=0

1∑
j=0

cij |i〉〈j| ⊗ |i〉〈j|


=

1∑
i=0

1∑
j=0

cij TrE′ (|i〉〈j| ⊗ |i〉〈j|) linearity of partial trace

=
1∑
i=0

1∑
j=0

cij
∑
`

(1B ⊗ 〈`|)(|i〉〈j| ⊗ |i〉〈j|)(1B ⊗ |`〉)

=
1∑
i=0

1∑
j=0

∑
`

cij |i〉〈j|〈`|i〉〈j|`〉

=
1∑
i=0

cii|i〉〈i| =
(
c00 0
0 c11

)

Thus we found that the CNOT gate does what we call a pinch of the matrix, which means
zeroing out all the entries that are not in the diagonal:

E
(
c00 c01
c10 c11

)
=
(
c00 0
0 c11

)
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and the Kraus representation of this is easily found (check it!):

E0 =
(

1 0
0 0

)
, E1 =

(
0 0
0 1

)

In general one can notice that, in vector notation, the partial trace can be easily computed:

TrB


a1 b1

a2 b2
c1 d1

c2 d2

 =
(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)

i.e. the trace is computed in blocks, in a similar way to how we distribute the tensor product.
Let us choose, to make the example more concrete, a pure state |ψ〉 = α|0〉+ β|1〉, i.e.

ρA = |ψ〉〈ψ| = |α|2|0〉〈0|+ α∗β|1〉〈0|+ αβ∗|0〉〈1|+ |β|2|1〉〈1| =
(
|α|2 α∗β
αβ∗ |β|2

)

Pinching the matrix gives us:

E
(
|α|2 α∗β
αβ∗ |β|2

)
=
(
|α2| 0

0 |β|2

)
= |α|2|0〉〈0|+ |β|2|1〉〈1|
= P (0)ρ |0〉〈0|+ P (1)ρ |1〉〈1|

which is not a superposition, but a probability mixture of post-measurement states. In particu-
lar, we can think of this as the view of the post measurement state for an observer that does only
know a measurement has been performed, but not its outcome. Thus, we showed here how to
schematize a projective measurement as a quantum channel, and this can be generalized (with
some effort) to an arbitrary observable and an arbitrary Hilbert space.

3.11 Measurements as quantum channels
Suppose to have a Hilbert space H = HA ⊗Hx, where the latter is continuous, and consider a
(discrete) observable MA on HA:

MA =
∑
k

ak|k〉〈k|

We may have more complex projectors for the same label, but we keep single elements (outer
products) |k〉〈k|, for simplicity. We already saw in Section 5.1 that a possible interaction Hamil-
tonian to implement MA is:

H = MA ⊗ Px =⇒ U(t) = exp
(
− it
~
MA ⊗ Px

)
We also saw that, with an initial state |ψ〉 = ∑

k ck|k〉 ⊗ |ψ0〉:

U(t)|ψ〉 =
∑
k

ck|k〉 ⊗ exp
(
− it
~
MA ⊗ Px

)
|ψ0〉

=
∑
k

ck|k〉 ⊗
∫
R
ψ0(x− tak)|x〉dx
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=:
∑
k

ck|k〉 ⊗ |ψk〉

We fix some time t > 0, and we define the pure state ρ after the evolution as:

ρ = |ψ(t)〉〈ψ(t)| =
∑
k,j

ckc
∗
j |k〉〈j| ⊗ |ψk〉〈ψj |

Let us assume we do not have a weak measurement, which means t and ak are chosen such that
the overlap between different |ψk〉 is negligible. In order to see the local effect, we apply the
partial trace, as before:

E(ρA) = Trx

∑
k,j

ckc
∗
j |k〉〈j| ⊗ |ψk〉〈ψj |


=
∑
k,j

ckc
∗
j Trx (|k〉〈j| ⊗ |ψk〉〈ψj |)

=
∑
k,j

ckc
∗
j

∫
R

(1A ⊗ 〈x|x) (|k〉〈j| ⊗ |ψk〉〈ψj |) (1A ⊗ |x〉x) dx

=
∑
k,j

ckc
∗
j |k〉〈j|

∫
R
〈x|ψk〉〈ψj |x〉dx

=
∑
k,j

ckc
∗
j |k〉〈j|

∫
R
〈ψj |x〉〈x|ψk〉dx

=
∑
k,j

ckc
∗
j |k〉〈j|〈ψj |

(∫
R
|x〉〈x|dx

)
|ψk〉

=
∑
k,j

ckc
∗
j |k〉〈j|〈ψj |ψk〉

'
∑
k

|ck|2|k〉〈k| overlap 〈ψk|ψk′〉 ' δ(k − k′)

i.e. locally we see exactly a mixture of the post-measurement states, with probabilities |ck|2. The
problem here is that the assumption that the overlap is negligible is not always reasonable: a
method to better model the measurement is to take into account the overlaps using the structure
of the density matrix. Let us review the last step of our computation:

E(ρ) =
∑
k,j

ckc
∗
j |k〉〈j|〈ψj |ψk〉

If j = k, then the term is 1 anyway, but if i 6= j, then the coefficient 〈ψj |ψk〉 will be somewhere
in [0, 1] (in absolute value). In the diagonal of E(ρ) we will still see |ck|2, but the pinch of the
matrix will not be perfect, i.e. the matrix can still have non-zero values outside of the diagonal.
This is called non-projective measurement: although we cannot implement it, it is a good ideal
model to work with.

Example in the discrete case. We can modify the example with the CNOT gate from the
previous section, by replacing the X gate with a rotation by an arbitrary angle around the x
axis of the Bloch sphere:

ρA E(ρA)

|0〉〈0|E Rx(θ)
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Depending on the rotation angle θ, we obtain different unitary evolution operators. In particular,
if θ = 0, nothing happens on the system and U(t) = 1. On the other hand, for θ = π we get
exactly the CNOT gate. Finally, other rotations will yield non-projective measurements with
non-zero values off the diagonals.

Kraus decomposition of an observable. We apply the law of total probability: with
probability P (k)ρ we end up with the corresponding post-measurement state (we avoid terms
with probability 0):

E(ρ) =
∑
k

P (k)ρ
ΠkρΠ†k
P (k)ρ

=
∑
k

ΠkρΠ†k

hence, Ek = Πk are valid Kraus operators since:∑
k

Π†kΠk =
∑
k

Π2
k =

∑
k

Πk = 1

3.12 Intuition: mixed states in the Bloch sphere
In this section we show an elegant geometric property of the Bloch sphere, which is helpful to
better understand what uncertainty is: a state |ψ〉 is identified by two spherical coordinates
(θ, φ):

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉

where θ ∈ [0, π), φ ∈ [0, 2π). Following what we saw in this chapter, this holds for any pure
state ρ = |ψ〉〈ψ|. Now let us add a third coordinate r ∈ [0, 1], ending up with a total coordinate
system (r, θ, φ): this means that we completed the Bloch sphere by adding its interior points. If
we have a state:

ρ =
∑
i

pi|ψi〉〈ψi|

this state is a convex combination of pure states, i.e. it can be identified by a point within the
sphere (which is exactly the convex hull of the space we are considering).

What about measurement probabilities now? We already know that a measurement
basis corresponds to two opposite points of the sphere, thus a segment connecting these two
points passes exactly through the origin. For example, suppose we measure with respect to Z,
i.e. the computational basis {|0〉, |1〉}: the segment is exactly a vertical segment{

(x, y, z) ∈ R3
∣∣∣ x = y = 0, z ∈ {−1, 1}

}
The measurement probabilities P (0)ρ ,P (1)ρ induced by a state ρ can be interpreted geometri-
cally as follows: take the point in the Bloch sphere corresponding to ρ and project it onto the
segment. This gives a point in the Bloch sphere x that can be expressed as:

x = (1− t)x0 + (t)x1
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where x0,x1 are the points of |0〉, |1〉 on the sphere. At this point, the probability of measuring
|0〉 is exactly t, and the other is 1 − t. Roughly speaking, the closer the projected point is to
one of the elements of the measurement basis, the more likely is that element to be observed.

This not only can be extended to an arbitrary measurement basis (i.e. an arbitrary diameter
of the sphere), but also shows that the fully mixed state is the only one that will be exactly in
the middle of any diameter, i.e. chosen any measurement basis, yielding a uniform distribution.

3.13 Heisenberg’s uncertainty principle
We close the chapter by showing an important and famous theoretical limit to the degree of
certainty we have about the state of a particle in space. For an observable A and a state ρ we
define the deviation observable:

∆A = A− 〈A〉ρ1

It is easy to see that the variance of A is exactly the expectation of (∆A)2. Whenever it is not
ambiguous we will denote by ∆A also the square root of ∆A2, i.e. the standard deviation of the
observable A.

We first prove some results that we will use:

Lemma 3.10. [∆A,∆B] = [A,B].

Proof. For any state ρ the following holds:

[∆A,∆B] = [A− 〈A〉ρ1, B − 〈B〉ρ1]
= [A,B]− 〈A〉ρ[1, B]− 〈B〉ρ[A,1] + 〈A〉ρ〈B〉ρ[1,1]
= [A,B]

since commutator is bilinear and everything commutes with the identity.

Lemma 3.11. For any two operators A,B, AB = 1
2 [A,B] + 1

2{A,B}, where

[A,B] := AB −BA
{A,B} := AB +BA

are respectively the commutator and the anti-commutator of A,B.

Proof. [A,B] + {A,B} = AB −BA+AB +BA = 2AB

Lemma 3.12. For any two Hermitian operators A,B:

1. [A,B] is anti-Hermitian;

2. {A,B} is Hermitian;

3. 〈ψ|[A,B]|ψ〉 is purely imaginary.

Proof. We prove the three claims separately:

1. [A,B]† = (AB −BA)† = (AB)† − (BA)† = B†A† −A†B† = BA−AB = −[A,B]

2. {A,B}† = (AB +BA)† = (AB)† + (BA)† = B†A† +A†B† = BA+AB = {A,B}
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3. We proved that [A,B]† = −[A,B], hence
(〈ψ|[A,B]|ψ〉)∗ = 〈ψ|[A,B]†|ψ〉 = −〈ψ|[A,B]|ψ〉

and any z with z∗ = −z is purely imaginary.

We are ready to prove our main result:

Theorem 3.13 (Robertson, Schrödinger). Let A,B be two observables. For any state |ψ〉 the
following bound holds:

∆A ∆B ≥ 1
2
∣∣∣〈[A,B]〉ψ

∣∣∣
Proof.

∆A2∆B2 = 〈ψ|(∆A)2|ψ〉〈ψ|(∆B)2|ψ〉
= 〈ψ|(∆A)†(∆A)|ψ〉〈ψ|(∆B)†(∆B)|ψ〉 ∆A,∆B are Hermitian
≥ |〈ψ|(∆A)(∆B)|ψ〉|2 Cauchy-Schwartz inequality

=
∣∣∣∣〈ψ|(1

2[∆A,∆B] + 1
2{∆A,∆B}

)
|ψ〉
∣∣∣∣2 by Lemma 3.11

= 1
4 |〈ψ|[A,B]|ψ〉+ 〈ψ|{∆A,∆B}|ψ〉|2 by Lemma 3.10

By Lemma 3.12 the first term is purely imaginary and, since {A,B} is Hermitian, it has real
labels and the expectation is real6. This means that the two terms are orthogonal in C and we
can separate them:

|a+ ib|2 = |a|2 + |b|2

Thus, we found that:

∆A2∆B2 ≥ 1
4 |〈ψ|[A,B]|ψ〉|2 + 1

4 |〈ψ|{∆A,∆B}|ψ〉|
2

≥ 1
4 |〈ψ|[A,B]|ψ〉|2

Taking the square root completes the proof.

As a corollary we obtain the Heisenberg uncertainty principle.

Principle 3.14 (Heisenberg). For a particle in space with position operator X and momentum
operator P :

∆X ∆P ≥ ~/2
where ~ is Planck’s constant.
Proof. It is sufficient to apply Theorem 3.13 where [X,P ] = i~1 is the canonical commutation
relation we derived in Section 2.3.

This result tells us that we cannot be very sure about both position and momentum at the
same time: if the variance of the position is very low, then the variance of the momentum will
be inevitably high and vice versa. In fact, for Gaussian wavepackets:

∆X = σ =⇒ ∆P = ~
2σ

which also proves that the bound is tight.

6The expectation of a real random variable is always real, convince yourself!
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Chapter 4
Dynamics of Open Systems
4.1 Schrödinger equation for mixed states
In this section we generalize the Schrödinger equation to mixed states in uniform dynamics. We
already know that the evolution of a state ρ(t) with Hamiltonian H, over a tiny period of time
δt is determined by:

ρ(t+ δt) = U(δt) ρ(t) U †(δt)

and this is because of uniform dynamics. Now let δt → 0 and take the Taylor expansion of
U(δt):

U(δt) = exp
(
− i δt

~
H

)
= 1− i δt

~
H +O(δt2)

Using this expansion, let us rewrite the expression above:

ρ(t+ δt) =
(
1− i δt

~
H +O(δt2)

)
ρ(t)

(
1 + i δt

~
H +O(δt2)

)
= ρ(t) + i δt

~
1ρ(t)H − i δt

~
Hρ(t)1 +O(δt2)

= ρ(t)− i δt

~
Hρ(t) + i δt

~
ρ(t)H +O(δt2)

= ρ(t)− i δt

~
[H, ρ(t)] +O(δt2)

By rearranging the terms we obtain:

ρ(t+ δt)− ρ(t)
δt

= − i
~

[H, ρ(t)] = 1
i~

[H, ρ(t)]

and, by taking the limit for δt→ 0 we obtain exactly the derivative on the left-hand side:

dρ

dt
= 1
i~

[H, ρ] (4.1)

and this is the time-independent Schrödinger equation for mixed states.

4.2 Open systems
Now we consider the notion of open system: the concept of “openness” in general physics implies
that the system can interact with the external environment. In order to schematize this in
quantum theory, we consider a Hilbert space of the form:

H = HS ⊗HE

where S is our open system and E represents the environment. Generally, dimHS � dimHE ,
i.e. the environment is typically a much larger system. If we try to analyze the evolution of the

42



system S, we need to take into account the influence of the environment. More concretely, this
means solving the Schrödinger equation on the whole system:

HSE 7→ USE(t) = exp
(
− it
~
HSE

)
Now here it comes the problem: HSE may be dramatically large, and we may not even know all
the details of the interaction enough to approximate the Hamiltonian. On the other hand, we
do not need to keep track of the evolution of the state ρSE of the whole system, in particular it
suffices for us to know enough of the state of the system ρS , i.e. the partial trace

ρS(t) = TrE
(
USE(t) ρSE(0) U †SE(t)

)
However, again, computing this partial trace may be infeasible, for the reasons we already
mentioned. The ideal model is to have a TPCPM E dependent on time which approximates
what happens in the environment:

ρS(t) = ES(t, ρS(0))

In order for this approximation to be good enough, we will assume that the dynamics of the
environment is much faster than the interaction, which means that previous correlations between
the system and the environment become negligible. A concrete example is the cup of coffee:
when heat is transferred from the coffee to the surrounding air, there are particles of air that
receive energy. Since the particles of a gas move really fast, we can assume that the particles in
the coffee interact with “new pieces of air” every time, and that it is unlikely to interact with
the same particle twice.

4.3 Lindblad equation
In this section we present the Lindblad equation, which is an extension of the Schrödinger
equation to the setting of the open systems. We take the idea we presented in the previous
section:

ρ(t+ δt) = E(δt, ρS(t))

where, again, E(δt, ·) is a TPCPM for every δt. We consider a tiny variation δρ:

E(δt, ρS(t)) ' ρ(t) + δρ

where |δρ| � |ρ|. Since this is a quantum channel, we can write down its Kraus decomposition:

E(δt, ρ) = ρ+ δρ =
∑
k

AkρA
†
k

and we choose the following Kraus operators:{
A0 = 1 + δt(L0 − iK)
Ak = Lk

√
δt k > 0

where K and Lk for every k are bounded operators.
Let us analyze the terms of the sum in the Kraus decomposition:

A0ρA
†
0 = (1 + δt (L0 − iK)) ρ (1 + δt (L0 + iK))
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= ρ+ δtL0ρ− iδtKρ+ δtρL0 + iδtρK +O(δt2)
= ρ+ δt{L0, ρ}+ iδt[ρ,K] +O(δt2)

where {A,B} := AB + BA is the anti-commutator we first introduced in Section 3.13, which
has the same bilinearity properties of the commutator (check it!). The terms with k > 0, on the
other hand, become simply:

AkρA
†
k = LkρL

†
k δt

If we put everything together we obtain:

ρ(t) + δρ =
∞∑
k=0

AkρA
†
k

= ρ+ δt{L0, ρ}+ iδt[ρ,K] + δt
∞∑
k=1

LkρL
†
k +O(δt2)

Hence, remembering that ρ+ δρ = ρ(t+ δt) and letting δt→ 0, we are left with:

ρ(t+ δt) = ρ(t) + δt

(
{L0, ρ}+ i[ρ,K] +

∞∑
k=1

LkρL
†
k

)
dρ

dt
= {L0, ρ} − i[K, ρ] +

∞∑
k=1

LkρL
†
k

and this last result we obtain is the Lindblad equation. While the anti-commutator and the Kraus
decomposition are new to us, the term in the middle closely resembles what we obtained in the
Schrödinger equation of Section 4.1, thus let us pick K = HS/~, where HS is the Hamiltonian
of our system. The Lindblad equation now becomes:

dρ

dt
= 1
i~

[HS , ρ] + {L0, ρ}+
∞∑
k=1

LkρL
†
k

This clearly shows that this is an extension of the Schrödinger equation. Indeed, let us consider
an isolated system, i.e. the system S and the environment E do not interact:

HSE = HS ⊗ 1E + 1S ⊗HE =⇒ USE(t) = US(t)⊗ UE(t)

implying that the evolution of our state is:

US(t)ρS(0)U †S(t)

which means that this state satisfies the Schrödinger equation and, in turn, the Lindblad equation
with Lk ≡ 0 for every k.

Now we would like to understand a bit more what these operators Lk look like, and in order
to infer this we will take advantage of some constraints that must hold. In particular, we check
that the trace is preserved:

Tr ρ ≡ 1 =⇒ d

dt
Tr ρ = Tr

(
dρ

dt

)
= 0

where the last equality follows from linearity of trace. Now we replace the Lindblad equation
here, and apply all the properties of trace we know:

0 = Tr
(
dρ

dt

)
= 1
i~

Tr[HS , ρ] + Tr{L0, ρ}+
∞∑
k=1

Tr
(
LkρL

†
k

)
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The trace of a commutator is always zero (why?), and the cyclic property of trace also ensures
us that

Tr(L0ρ+ ρL0) = Tr(L0ρ) + Tr(ρL0) = 2 Tr(L0ρ)

The sum in the third term, on the other hand, yields

∞∑
k=1

Tr
(
LkρL

†
k

)
=
∞∑
k=1

Tr
(
L†kLkρ

)
Putting all together we obtain that:

0 = 2 Tr(L0ρ) +
∞∑
k=1

Tr
(
L†kLkρ

)
0 = Tr(L0ρ) + 1

2

∞∑
k=1

Tr
(
L†kLkρ

)
0 = Tr

(
L0ρ+ 1

2

∞∑
k=1

L†kLkρ

)

0 = Tr
((

L0 + 1
2

∞∑
k=1

L†kLk

)
ρ

)

Since this must hold for any state ρ, we evince that the expression in the tuples must be the
null operator, i.e.

L0 + 1
2

∞∑
k=1

L†kLk = 0⇐⇒ L0 = −1
2

∞∑
k=1

L†kLk

Hence we can replace L0 in the Lindblad equation:

dρ

dt
= 1
i~

[HS , ρ]− 1
2

{ ∞∑
k=1

L†kLk, ρ

}
+
∞∑
k=1

LkρL
†
k (4.2)

and Lk for k > 0 are called Lindblad operators. Our goal now is to understand what these
Lk mean and, more concretely, how to compute them for a given physical system we want to
analyze.

Example with qubits. We consider our system to be a qubit:

HS = span{|0〉, |1〉}

with degenerate Hamiltonian, i.e. HS = 0 and the two states are at the same energy level. This
qubit is in a generic state ρ:

ρS(0) =
(
c00 c01
c10 c11

)

We would like ρ to converge to |0〉〈0| for any initial state (which means that the qubit is erased):

lim
t→∞

ρS(t) = |0〉〈0|
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The elegance of Lindbladian analysis here is that we only need a single Lindblad operator to get
the desired effect:

L1 = λ|0〉〈1|

which means that |1〉 is always mapped to |0〉, and λ influences how fast the evolution will be.
Since L†1L1 = λ2|1〉〈1| and HS = 0, the Lindblad equation in this case becomes:

dρ

dt
= −λ

2

2 {|1〉〈1|, ρ}+ λ2|0〉〈1|ρ|1〉〈0|

= λ2
(
−1

2 |1〉〈1|ρ−
1
2ρ|1〉〈1|+ 〈1|ρ|1〉|0〉〈0|

)
= λ2

(
−1

2

(
0 0
0 1

)(
c00 c01
c10 c11

)
− 1

2

(
c00 c01
c10 c11

)(
0 0
0 1

)
+ c11

(
1 0
0 0

))

= −λ2
(

0 0
c10/2 c11/2

)
− λ2

(
0 c01/2
0 c11/2

)
+ λ2

(
c11 0
0 0

)

We found that the evolved state satisfies the following linear system of differential equations:

d

dt

(
c00 c01
c10 c11

)
= λ2

(
c11 −c01/2
−c10/2 −c11

)

We immediately see that c10(t), c01(t), c11(t) have an equation of the form y′ = −dy, thus they
die exponentially fast (y(t) = y(0)e−ct). The only term surviving will be c00:

dc00
dt

= λ2c11(t) = λ2c11(0)e−λ2t

c00(t)− c00(0) = λ2
∫ t

0
c11(0)e−λ2tdt = λ2

[
−c11(0)e

−λ2t

λ2

]t
0

= c11(0)− c11(0)e−λ2t

Hence we found that c00(t) = c00(0) + c11(0)− c11(0)e−λ2t = 1− c11(0)e−λ2t, and this is because
c00 + c11 = Tr ρ = 1. Putting all together, we found the expression for the evolution of ρ:

ρ(t) =
(

1− c11(0)e−λ2t c01(0)e−λ2t/2

c10(0)e−λ2t/2 c11(0)e−λ2t

)
→
(

1 0
0 0

)
= |0〉〈0|.
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Chapter 5
Physical implementation of
measurements
5.1 Indirect measurement and the modular momentum
In this section we discuss a general method to implement observables that are not directly
measurable, then we will see a concrete example with a deeper analysis of the Stern-Gerlach
experiment. Consider two Hilbert spaces:

H = HA ⊗Hx

and an observable M on HA that is not directly measurable, for example an internal degree of
freedom (like spin) of a particle:

MA =
∑
k

ak|k〉〈k|A

The second subsystem represents something easily measurable, such as the position of some
particle. The idea is to evolve the system using a suitable interaction Hamiltonian, in such a
way that, after the evolution, the subsystem we want to measure and the one we can measure
are entangled in a convenient way. At this point it will be sufficient to carry out a measurement
on the latter. For this purpose, we propose the following interaction Hamiltonian:

H = MA ⊗ Px =⇒ U(t) = exp
(
− it
~

(MA ⊗ Px)
)

Given an initial state

|ψ̃0〉 =
(∑

k

ck|k〉A

)
⊗ |ψ0〉x =

∑
k

ck|k〉A ⊗ |ψ0〉x

its evolution can be computed by using the definition of exponential (as usual):

U(t)|ψ̃0〉 = exp
(
− it
~

(MA ⊗ Px)
)(∑

k

ck|k〉A ⊗ |ψ0〉x

)

= exp
(
− it
~

(∑
k

ak|k〉〈k|A ⊗ Px

))(∑
k

ck|k〉A ⊗ |ψ0〉x

)

=
∞∑
n=0

1
n!

(
− it
~

)n(∑
k

ak|k〉〈k|A ⊗ Px

)n(∑
k

ck|k〉A ⊗ |ψ0〉x

)

=
∞∑
n=0

1
n!

(
− it
~

)n((∑
k

ak|k〉〈k|A

)n
⊗ Pnx

)(∑
k

ck|k〉A ⊗ |ψ0〉x

)

=
∞∑
n=0

1
n!

(
− it
~

)n(∑
k

ank |k〉〈k|A ⊗ Pnx

)(∑
k

ck|k〉A ⊗ |ψ0〉x

)

=
∑
k

∑
k′

∞∑
n=0

1
n!

(
− it
~

)n
(ank |k〉〈k|A ⊗ Pnx )

(
ck′ |k′〉A ⊗ |ψ0〉x

)
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=
∑
k

∑
k′

∞∑
n=0

1
n!

(
− it
~

)n (
ankck′ |k〉〈k|k′〉A ⊗ Pnx |ψ0〉x

)
=
∑
k

∑
k′

∞∑
n=0

1
n!

(
− it
~
ak

)n (
ck′δk,k′ |k〉 ⊗ Pnx |ψ0〉x

)
=
∑
k

∞∑
n=0

1
n!

(
− it
~
ak

)n
(ck|k〉A ⊗ Pnx |ψ0〉x)

=
∑
k

ck|k〉A ⊗
( ∞∑
n=0

1
n!

(
− it
~
akPx

)n)
|ψ0〉x

=
∑
k

ck|k〉A ⊗ exp
(
− it
~
akPx

)
|ψ0〉x

This tells us that this Hamiltonian perfectly entangles the two subsystems in such a way that
the state of the second subsystem has a term ak upon measurement of state |k〉 on the first
subsystem. We let Lk = t · ak, and define a new operator called the modular momentum
operator:

exp
(
− i
~
LkP

)
We use the modular momentum operator to analyze the evolution of the position state, express-
ing it in the momentum basis:

e−iLkP/~|ψ0〉 =
∫
R
e−iLkP/~ψ̄0(p)|p〉dp

=
∫
R

∞∑
n=0

1
n!

(
− i
~
LkP

)n
ψ̄0(p)|p〉dp

=
∫
R

∞∑
n=0

1
n!

(
− i
~
Lkp

)n
ψ̄0(p)|p〉dp since Pn|p〉 = pn|p〉

=
∫
R
ψ̄0(p) e−iLkp/~ |p〉dp

Thus the momentum wave function of |ψ〉 = e−iLkP |ψ0〉 is:

ψ̄(p) = ψ̄0(p) e−iLkp/~

We just found that the modular momentum operator acts on the momentum wave function as:

exp
(
− i
~
LkP

)
: ψ̄0(p)→ ψ̄0(p) e−iLkp/~

Now we can find the position wave function with an inverse Fourier transform:

ψ(x) = 1√
2π~

∫
R
ψ̄0(p) e−iLkp/~ eipx/~dp

= 1√
2π~

∫
R
ψ̄0(p) eip(x−Lk)/~dp

= ψ0(x− Lk).

We found that the modular momentum operator exp(−iLP/~) shifts the position by Lk to the
right, as depicted in Figure 5.1, and generally acts on the position wave function as

exp
(
− i
~
LkP

)
: ψ0(x)→ ψ0(x− Lk).
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Figure 5.1: The modular momentum operator shifts the position wave function by Lk towards
the positive direction of the axis.

Figure 5.2: The initial Gaussian wave function (blue) evolves to become a superposition of
Gaussians with different means (red).

If we go back to our evolution and replace Lk we obtain:

U(t)|ψ̃0〉 =
∑
k

ck|k〉A ⊗ exp
(
− it
~
akPx

)
|ψ0〉x

=
∑
k

ck|k〉A ⊗
∫
R
ψ0(x− tak)|x〉dx

We actually associated the state of the first subsystem with a position shift in the second
subsystem. In the case where |ψ0〉 has a Gaussian wave function, we can also see that the wave
stayed intact, but its peak is shifted. Thus, if we wait for long enough (i.e. t sufficiently large,
Figure 5.2) we can make the points {t · ak}k sufficiently distant from each other, making the
overlaps between waves negligible. At this point one can construct an observable on the position
by partitioning the x-axis in regions centered on the peaks {t · ak}k. Notice that the actual
Gaussians in the induced probability mixture are also scaled by the factors ci: peaks associated
with more probable |k〉 must also be observed with higher probability.

We want to stress the fact that the time t we let the system evolve before measuring the
position must be chosen in relation to the variance of the initial position state. If the value of
t is too small, it will give rise to a problem of weak measurements (we obtain little information
about the first subsystem through a measurement of the position, as the peaks are too close:
see Figure 5.3). The same thing could happen if the initial variances of the position were too
large. There is still active research on this topic.

Another choice of coupling between the system to be measured and the pointer is given by
the Hamiltonian

H = MA ⊗Xx =⇒ U(t) = exp
(
− it
~

(MA ⊗Xx)
)
.

The final effect will be analogous to the previous Hamiltonian: it will shift the momentum wave
function and multiply the position wave function by an exponential. To see this, we can apply
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Figure 5.3: Examples of weak measurements due to small t (left) and high initial uncertainty
in position (right).

the unitary to the initial state:

U(t)|ψ̃0〉 = exp
(
− it
~

(MA ⊗Xx)
)(∑

k

ck|k〉A ⊗ |ψ0〉x

)

=
∑
k

ck|k〉A ⊗ exp
(
− it
~
akXx

)
|ψ0〉x.

This leads us to define the modular position operator,

exp
(
− i
~
LkX

)
,

where again Lk = akt. We can see how this operator acts on the initial state by expanding the
latter, this time in the position basis,

e−iLkX/~|ψ0〉 =
∫
R
e−iLkX/~ψ0(x)|x〉dx

=
∫
R
ψ0(p) e−iLkx/~ |x〉dx

Thus the modular position acts on the position wave function as

exp (−iLkX/~) : ψ0(x)→ ψ0(p) e−iLkx/~.

By applying the reverse Fourier transform we can see how it acts on the position wave function:

ψ̄(p) = 1√
2π~

∫
R
ψ0(x) e−iLkx/~ e−ipx/~dp

= 1√
2π~

∫
R
ψ0(x) eix(p+Lk)/~dp

= ψ0(p+ Lk).

Overall, we have that our evolution results in the state transformation

U(t)|ψ̃0〉 =
∑
k

ck|k〉A ⊗ exp
(
− it
~
akXx

)
|ψ0〉x

=
∑
k

ck|k〉A ⊗
∫
R
ψ̄0(p+ tak)|p〉dp.
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Figure 5.4: A scheme for the Stern-Gerlach experiment, which allows to indirectly determine
the spin of an electron by looking at its position.

How do we know which interaction Hamiltonian to choose — the one that couples to mo-
mentum (and shifts position) or the one that couples to position (and shifts momentum)? This
depends on the experimental setup, how we are planning to observe our pointer system, and
also what physics is available for us to implement one or the other. In the following section we
will see an example through the Stern-Gerlach experiment. There we will end up choosing to
couple the internal spin of a particle to its position, leading to a selective shift in momentum.
This is because we can then let this particle evolve under a free Hamiltonian, so that a small
kick in momentum can result in a large difference in position after some time.

5.2 The Stern-Gerlach experiment
Here we present a more concrete example of the Stern-Gerlach setup. An electron moving on a
plane has one internal degree of freedom (its spin), which can be modeled as qubit:

HS = span{|0〉, |1〉}

and two orbital degrees of freedom, i.e. its position in the plane:

Hx = span{|x〉, x ∈ R}, Hy = span{|y〉, y ∈ R}

The total state space of the electron can thus be modeled as

H = HS ⊗Hx ⊗Hy

We already saw what the Stern-Gerlach experiment is about: measuring the spin of the electron
indirectly by looking at its position. We identify three regions in the x-y plane as depicted in
Figure 5.4. In particular, red shaded areas provide some intuition about the uncertainty in the
position of the particle with respect to the x axis, whereas arrows indicate how the momentum
changes in the different regions of space:

• A region A, where the electron starts in a state |ψ̃0〉 with a two-dimensional Gaussian wave
such that the expected momentum 〈P〉 points towards the positive y-axis;

• A region B of depth δ influenced by a magnetic field;
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• A region C with a screen where the electron will land, which is used for measurement.

In order to analyze the motion of the particle we decompose the Hamiltonian into a free
particle component H0 and an interaction Hamiltonian H int, which should take into account
the force due to the magnetic field in region B.

H = H0 +H int

H0 has no secrets for us:

H0 = P 2

2µ = 1
2µ
(
1S ⊗ P 2

x ⊗ 1y + 1S ⊗ 1x ⊗ P 2
y

)
The form of the interaction Hamiltonian is a bit more interesting:

H int = H int
sx ⊗ΠB

y = H int
sx ⊗

(∫ δ

0
|y〉〈y|dy

)

This way of expressing a tensor product of an observable and a projection operator, is powerful
but straightforward: the interaction Hamiltonian is nonzero only when we are in region B and,
in fact ΠB

y |y〉 = 0 for every (x, y) 6∈ B. The definition of H int
sx is something we will derive when

we discuss the motion in region B.

The initial state. Let us discuss the form of |ψ̃0〉: we consider a particle with spin and
position unentangled:

|ψ̃0〉 = |φ〉 ⊗ |ψ0〉

where |φ〉 is a qubit of the form:

|φ〉 = α|0〉+ β|1〉

while the position of the particle in the plane is expressed as a two-dimensional Gaussian wave
packet:

|ψ0〉 =
∫∫

R2
eiky · 1√

2πσ2
· e−

1
4 (r−µ)TΣ−1(r−µ)|r〉d2r

You can check that the square of the absolute value of the wave function is exactly the probability
density function of a gaussian distribution with mean µ = (x0, y0)T and covariance matrix Σ.
Note also that the term of the form eikx is missing, and this is because we said that the expected
momentum points towards the positive y-axis (in particular, 〈P 〉 = (0, ~k)T ).

For simplicity we also assume here that Σ = σ2
1, so that x and y are unentangled and with

the same initial variance:(
∆X2

)
0

=
(
∆Y 2

)
0

= σ2,
(
∆P 2

x

)
0

=
(
∆P 2

y

)
0

= ~2

4σ2

We can imagine to look at these Gaussian waves from above, representing higher measurement
probabilities with a darker color shade as in Figure 5.5. The computation for a general initial
Σ requires minor changes, which are not relevant here.
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Figure 5.5: Gaussian waves in position (left) and momentum (right) basis of the initial state
represented from above.
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Figure 5.6: Gaussian waves in position and momentum basis for the state after the evolution
in region A.

Motion in region A. Since spin and positions are unentangled here, we know that the evo-
lution operator here can be written as tensor product:

U(t) = 1S ⊗ exp
(
− it
~
Hx

)
⊗ exp

(
− it
~
Hy

)
= 1S ⊗ exp

(
− it
~
P 2
x

2µ

)
⊗ exp

(
− it
~
P 2
y

2µ

)
Thus the qubit remains unchanged:

〈ZS〉t = 〈ZS〉0 = |α|2 − |β|2

Ehrenfest’s theorems give us the expression for the expectations of position and momentum:{
〈X〉t = 〈X〉0 = x0

〈Y 〉t = 〈Y 〉0 + ~kt = y0 + ~kt
∧
{
〈Px〉t = 〈Px〉0 = 0
〈Py〉t = 〈Py〉0 = ~k

And for Gaussian wave packets:
(
∆X2)

t = ~2

4σ2µ2 t
2 + σ2 = σ2

t(
∆Y 2)

t = ~2

4σ2µ2 t
2 + σ2 = σ2

t

∧


(
∆P 2

x

)
t =

(
∆P 2

x

)
0 = ~2

4σ2(
∆P 2

y

)
t

=
(
∆P 2

y

)
0

= ~2

4σ2

As before, we give some intuituion for what the waves packets look like in Figure 5.6.

Motion in region B. Here we would like to have a precise effect: the magnetic field should
push the electron to the left or to the right according to its spin. According to the evolution we
had in region A, the electron must be entering region B with a state of the form:

|ψ̃0〉 = (α|0〉S + β|1〉S)⊗ |ψ0〉xy
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Figure 5.7: The wave function resulting from the evolution in region B.

where |ψ0〉xy has a Gaussian wave with 〈Py〉 = ~k and 〈Px〉 = 0. Ideally, the final state (i.e.
when the electron reaches the end of region B) should be of the form:

|ψ̃〉 = α|0〉S ⊗ |ψL〉xy + β|1〉S ⊗ |ψR〉xy

where the states |ψL〉, |ψR〉 enclose Gaussian waves with 〈Py〉 = ~k and 〈Px〉 respectively −~a
and +~a for some a > 0. We anticipate that we will take a sufficiently small δ ' 0 such that
the region B has negligible thickness, and we can immediately return to the assumption of free
motion. Thus, now we need to find a suitable choice of H int

sx which gives the desired result. We
will try the two coupling Hamiltonians from Section 5.1. First we try the one that couples the
observable to momentum:

H int
sx = MS ⊗ Px,

where M is the observable on the qubit we cannot directly measure. We let M = γZ: the γ
factor will be useful to separate the waves in superposition and overcome the problem of weak
measurements discussed at the end of Section 5.1 more easily. Measuring with γZ instead of Z,
however, makes no difference to us. Another problem is that H int

sx , unlike in the discussion of
Section 5.1, is not the only Hamiltonian we have here, as we also have the free particle Hamilto-
nian H0. Sweeping this problem under the rug for now (think of an approximate Hamiltonian
here), we compute the evolution due to the interaction:

U(t)|ψ̃0〉 = exp
(
− it
~
H int
sx

)
|ψ̃0〉

= exp
(
− it
~
γZ ⊗ Px

)
|ψ̃0〉

= α|0〉 ⊗ exp
(
− it
~
γPx

)
|ψ0〉+ β|1〉 ⊗ exp

(
+ it

~
γPx

)
|ψ0〉

= α|0〉 ⊗
(∫

R
ψ0(x− tγ)|x〉dx

)
+ β|1〉 ⊗

(∫
R
ψ0(x+ tγ)|x〉dx

)
We obtain the decomposition of the original wave function into two wave functions, where the
area under each curve is roughly |α|2 for the left one and |β|2 for the right (Figure 5.7).

But at the start we said we would shift the momentum, not the position, and this would also
avoid having to deal with the free particle Hamiltonian in region B (this, again, because δ ' 0);
finally this would create a sufficiently large gap in position with the free motion in region C.
If we want to implement this shift in momentum we can replace the momentum operator with
the position operator. We then obtain the modular position operator and with the exact same
computation we get:

U(t)|ψ̃0〉 = exp
(
− it
~
H int
sx

)
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= exp
(
− it
~
γZ ⊗X

)
|ψ̃0〉

= α|0〉 ⊗ exp
(
− it
~
γX

)
|ψ0〉+ β|1〉 ⊗ exp

(
+ it

~
γX

)
|ψ0〉

= α|0〉 ⊗
(∫

R
ψ̃0(p+ tγ)|p〉dp

)
+ β|1〉 ⊗

(∫
R
ψ̃0(p− tγ)|p〉dp

)
We presented the modular momentum first because a shift in position is more intuitive and
straightforward to visualize; it will also be useful later.

Motion in region C. Since we are back to the free particle assumption we have the same
evolution as in region A:

U(t) = 1S ⊗ exp
(
− it
~
P 2
x

2µ

)
⊗ exp

(
− it
~
P 2
y

2µ

)

But this time, 〈Px〉 is ±~γ (the sign depends on the component of the superposition), and the
particle will deviate either to the left or to the right.

State tomography. What if we wanted to estimate α and β? Assuming we are able to prepare
several identical initial states, we can simply repeat the experiment and do an estimation of
|α|2 by looking at the fraction of qubits that are measured as |0〉, (|β|2 will follow by the
normalization constraint). We know, however, that a qubit has another degree of freedom, i.e.
its relative phase. We can find a second constraint, linearly independent from the first, by
doing the same estimation with respect to another basis: for example we replace the Z in the
interaction Hamiltonian for region B with the Pauli matrix X. This procedure however requires
us to have many copies of the same state |ψ〉 we want to estimate (remember that we cannot
clone a qubit).
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Chapter A
Recap on Analysis
Here we briefly list all the elements of analysis needed to understand the lectures.

A.1 Exponential function
The exponential function f(x) = ex is defined as:

ex = lim
n→∞

(
1 + x

n

)n
=
∞∑
n=0

xn

n!

Using these expressions, the definition of exponential can be extended to arbitrary objects with
an algebraic structure providing an addition operator + and a multiplication operator ·.

A.2 Dirac delta function
We define δε(x) as the following function (also called nascent delta):

δε(x) =
{1
ε 0 < x < ε

0 otherwise

x

δε(x)

1
ε

ε

The Dirac delta function δ(x) can be defined as:

δ(x) = lim
ε→0

δε(x)

This function has important properties that are used extensively in calculus applied to quantum
physics. Here we show some of them.

Theorem A.1.
∫
R δ(x)dx = 1.

Proof. ∫
R
δ(x)dx =

∫
R

lim
ε→0

δε(x)dx = lim
ε→0

∫
R
δε(x)dx = lim

ε→0

∫ ε

0

1
ε
dx = lim

ε→0
1 = 1

Theorem A.2. If f is continuous at x = 0, then
∫
R f(x)δ(x)dx = f(0).
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Proof. ∫
R
f(x)δ(x)dx = lim

ε→0

∫ ε

0

1
ε
f(x)dx

= lim
ε→0

∫ ε

0

1
ε
f(0)dx by continuity of f

= f(0) lim
ε→0

∫ ε

0

1
ε
dx = f(0)

This result can be generalized to a generic center:∫
R
f(x)δ(x− x0)dx = f(x0)

for any function f continuous in x = x0.
We conclude this section by mentioning the analogous of the Dirac delta for the discrete

case: the Kronecker Delta, which is defined as follows

δij =
{

1 i = j

0 otherwise

A.3 Complex numbers
The set of complex numbers C can be defined as:

C = {a+ ib | a, b ∈ R}

where i :=
√
−1 is the imaginary unit. Any complex number z ∈ C can be expressed as above,

where <z := a,=z := b are respectively the real and imaginary parts of z.

Theorem A.3 (Euler’s identity). eiθ = cos(θ) + i sin(θ).

Proof. We can rewrite the Taylor series of the exponential:

eiθ =
∞∑
n=0

(iθ)n
n!

=
∞∑
n=0

(iθ)2n

(2n)! +
∞∑
n=0

(iθ)2n+1

(2n+ 1)! splitting the sum

=
∞∑
n=0

i2n
θ2n

(2n)! +
∞∑
n=0

i2n+1 θ2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n θ2n

(2n)! + i
∞∑
n=0

(−1)n θ2n+1

(2n+ 1)! since i2 = −1

= cos(θ) + i sin(θ) Taylor series of sin and cos

Using this identity we can always express z ∈ C in complex exponential form:

z = ρeiθ
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where ρ ∈ R+
0 is called absolute value (also written as |z|) and θ ∈ [0, 2π] is the phase. One can

pass from one representation to another in the following way:

a+ ib 7→
√
a2 + b2ei arctan(b/a)

ρeiθ 7→ ρ cos(θ) + iρ sin(θ)

Definition A.4 (Complex conjugate). Let z = a+ ib ∈ C. We define the operator z∗ = a− ib
as the complex conjugate of z.

Some extremely important observations about complex conjugates:

• (z1 + z2)∗ = z∗1 + z∗2 ;

• (z1z2)∗ = z∗1z
∗
2 ;

• z∗z = |z|2, since (a+ ib)(a− ib) = a2 − (ib)2 = a2 + b2 = |z|2;

• If a = 0 (i.e. z is purely imaginary), then z∗ = −z;

• If ρ = 1 (i.e. z is unitary), then z∗ = 1
z .

The first two properties imply linearity of conjugation, while from the last two properties we
also evince that −i = i∗ = 1

i , which we will use extensively.

A.4 Fourier transform
Let f : R→ R be an integrable function. The Fourier transform f is a function F defined as:

F (t) = F [f ] = 1√
2π

∫
R
f(x) eitx dx

The inverse of the Fourier transform is another Fourier transform:

f(x) = F [f ] = 1√
2π

∫
R
F (t) e−itx dt

When we need to use the Fourier transform in quantum physics as relation between position
p and momentum x, we add the Planck constant ~ for historical reasons, but also because ~
removes the units of measurements of the term px in the exponential:

F (p) = 1√
2π~

∫
R
f(x) eipx/~ dx

f(x) = 1√
2π~

∫
R
F (p) e−ipx/~ dp

Here we briefly list some properties of the Fourier transform. We will directly refer to the
position-momentum transform, but analogous results hold for a general Fourier transform:

Theorem A.5 (Linearity of the transform). F [af + bg] = aF [f ] + bF [g] for a, b ∈ C.

Proof. Directly follows from linearity of integral.

Theorem A.6 (Transform of derivative). F [f ′] = ip
~ F [f ]
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Proof.

F [f ′] = 1√
2π~

∫
R
f ′(x) eipx/~ dx

= 1√
2π~

[
f(x) eipx/~

]
R
− 1√

2π~

∫
R
f(x)

(
− ip

~

)
eipx/~ dx integration by parts

= ip

~
1√
2π~

∫
R
f(x) eipx/~ dx

= ip

~
F [f ]

The first term of the integration by parts tends to 0 at ±∞, for the assumption that the integral
f(x) eipx/~ converges (i.e. the Fourier transform of f(x) is finite).

Theorem A.7 (Transform of the shift). F [f(x− x0)] = eipx0F [f ]

Proof.

F [f(x− x0)] = 1√
2π~

∫
R
f(x− x0) eipx/~ dx

= 1√
2π~

∫
R
f(x) eip(x+x0)/~ dx substitution x← x+ x0

= eipx0/~ 1√
2π~

∫
R
f(x) eipx/~ dx

= eipx0/~F [f ]

Theorem A.8 (Transform of the Dirac delta). F [δ] ≡ 1√
2π~ .

Proof. We use Theorem A.2:

F [δ] = 1√
2π~

∫
R
δ(x) eipx/~ dx = 1√

2π~
eip0/~ = 1√

2π~

Corollary A.9. The Dirac delta function can be defined as:

δ(x) = 1
2π~

∫
R
e−ipx/~dp

Proof. By Theorem A.8, δ(x) is the anti-transform of 1√
2π~ , hence:

δ(x) = 1√
2π~

∫
R

1√
2π~

e−ipx/~dp

= 1
2π~

∫
R
e−ipx/~dp
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A.5 Solving differential equations
Definition A.10 (Differential equation). A (ordinary) differential equation is an equation of
the form:

fn(t, y, y′, . . . , y(n)) = 0

where y(t) is an unknown function of t, and y(k) denotes the k-th derivative of y. In this case,
n is said to be the order of the equation.

Definition A.11. An ordinary differential equation is said to be linear if:

fn(t, y, y′, . . . , y(n)) = g(t) + g0(t)y + g1(t)y′ + · · ·+ gn(t)y(n) = g(t) +
n∑
k=0

gk(t)y(k)

Moreover, if g(t) = 0, the equation is said to be homogeneous.

Theorem A.12. The solution space to a linear homogeneous ordinary differential equation
yields a vector space.

Proof. If y1, y2 are solutions, then also αy1 + βy2 is a solution since:
n∑
k=0

gk(t)(αy1 + βy2)(k) = α
n∑
k=0

gk(t)y(k)
1 + β

n∑
k=0

gk(t)y(k)
2 = 0

Theorem A.13. An homogeneous, first order linear differential equation yields the following
solution space:

y′ = ky =⇒ y(t) = y(t0)ek(t−t0)

for a fixed t0 ∈ R.

Proof. We integrate the equation once:

y′ = ky ⇔ y′

y
= k

⇔
∫ t

t0

y′

y
dt =

∫ t

t0
k dt

⇔
∫ y(t)

y(t0)

dy

y
= k

∫ t

t0
dt substitution y = y(t), dy = y′dt

⇔ ln y(t)− ln y(t0) = k(t− t0)
⇔ ln y(t) = ln y(t0) + k(t− t0)
⇔ y(t) = y(t0)ek(t−t0)

Definition A.14. A linear system of differential equations is of the form:

y′ = Ay + b

where y, y′ ∈ Cn, A ∈ Cn×n and b ∈ Cn. n is said to be the order of the system. If b = 0 the
system is said to be homogeneous.
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Theorem A.15. An homogeneous linear system of differential equations of the form:

y′ = Ay

yields the following solution space:

y(t) = eA(t−t0)y(t0)

Moreover, if v1, . . . , vn are eigenvectors of A associated to the eigenvalues λ1, . . . , λn then the
solution can be rewritten as:

y(t) =
n∑
k=1

eλk(t−t0)vkv
†
ky(t0)

For a recap on eigenvalues and eigenvectors, see Chapter B.
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Chapter B
Recap on Linear Algebra
Here we list the main notions of linear algebra. Keep in mind that we talk about complex field.
Some definitions and results are not identical from the linear algebra over real field you may be
more familiar with, but they are natural extensions.

B.1 Properties of the trace
Theorem B.1 (Linearity of trace). Tr(αA+ βB) = αTr(A) + β Tr(B).

Theorem B.2 (Cyclic property of the trace). Let A ∈ Cm×n, B ∈ Cn×m. The following holds:

Tr(AB) = Tr(BA)

Proof.

Tr(AB) =
∑
i

[AB]ii =
∑
i

∑
j

ajibij =
∑
j

∑
i

aijbji =
∑
j

[BA]jj = Tr(BA)

Theorem B.3. The trace of a matrix Tr(A) is independent of the basis chosen to represent A.

Proof. In other words, Tr(UAU−1) = Tr(A) for any full-rank matrix U , but we get this for free
from the cyclic property:

Tr(UAU−1) = Tr(AU−1U) = Tr(A)

B.2 Inner product spaces
Definition B.4. Let X be a vector space over complex field, and let 〈·, ·〉 : X × X → R be a
function. A tuple (X , 〈·, ·〉) is said to form a inner product space or pre-Hilbert space if
the following holds for 〈·, ·〉:

• Linearity: 〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉 and 〈αa, c〉 = α〈a, c〉 for a, b, c ∈ X , α ∈ C;

• Hermitian symmetry: 〈a, b〉 = 〈b, a〉∗ where ·∗ denotes the complex conjugate;

• Positive definiteness: 〈a, a〉 > 0 for a 6= 0.

A inner product space can be defined also for reals and, in that case, we obtain the definition
of Euclidean space.

Definition B.5. Let X be a vector space and d : X × X → R+
0 . The tuple (X , d) is said to

form a metric space if the following hold for d:

• Identity of discernibles: d(x, y) = 0⇐⇒ x = y;

• Symmetry: d(x, y) = d(y, x);
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• Triangular inequality: d(x, z) ≤ d(x, y) + d(y, z).

A inner product space (X , 〈·, ·〉) naturally induces a metric space (X , d) where:

d(x, y) = 〈x− y, x− y〉

The standard (dot) product between complex vectors in Cn is redefined as:

〈x, y〉 = x†y = x∗1y2 + · · ·+ x∗nyn

And two vectors x, y ∈ Cn are said to be orthogonal if and only if x†y = 0.

Theorem B.6 (Cauchy-Schwarz). For any two vectors x, y of an inner product space (X , 〈·, ·〉)
we have 〈x, x〉〈y, y〉 ≥ |〈x, y〉|2.

Proof. If 〈y, y〉 = 0, the claim is trivial. Therefore, assume 〈y, y〉 6= 0. Define the following
vector:

z = x− 〈x, y〉
〈y, y〉

y

One can notice that, by linearity of the inner product:

〈z, y〉 = 〈x− 〈x, y〉
〈y, y〉

y, y〉 = 〈x, y〉 − 〈x, y〉
〈y, y〉

〈y, y〉 = 0

i.e. z and y are orthogonal, and x can be represented as:

x = 〈x, y〉
〈y, y〉

y + z

since this is a sum of orthogonal vectors, we can use the Pythagorean theorem:

||x||2 =
∣∣∣∣〈x, y〉〈y, y〉

∣∣∣∣2 ||y||2 + ||z||2 ≥ |〈x, y〉|
2

||y||2

implying, ||x||2||y||2 ≥ |〈x, y〉|2, as claimed.

B.3 Unitary matrices
Definition B.7. The transpose conjugate A† of a matrix A is defined as:

A† = (A∗)T ≡ (AT )∗

The complex conjugate applies to every entry of a matrix or vector and is interchangeable with
any linear operator, by linearity of conjugation.

Definition B.8. A square matrix U ∈ Cn×n is said to be unitary if U−1 = U †.

A real unitary matrix yields exactly the definition of orthogonal matrix. The following
properties hold for a unitary matrix U :

• U has orthogonal columns;

• |det(U)| = 1;

• All the eigenvalues of U are unitary, i.e. |λ| = 1 for every eigenvalue λ of U (see next
section for the definition of eigenvalues).
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B.4 Eigenvalues and eigenvectors
Definition B.9 (Eigenvalues). Let A ∈ Cn×n. An eigenvalue λ of A is such that, there exists
v ∈ Cn such that:

Av = λv

v is said to be an eigenvector of A for λ.

Computing the eigendecomposition of a matrix. Here we show how to compute the
eigendecomposition of a matrix A ∈ Cn×n, namely find all the vectors v ∈ Cn such that:

Av = λv

along with the corresponding eigenvalues λ. First of all, we rewrite the above constraint as:

Av
!= λ1v ⇐⇒ (A− λ1)v != 0

This is a linear system of equations, and we would like to find all the values of λ such that the
system is non-trivial, i.e. the solution is not only the zero vector. This means that we would
like to find λ such that the rank of the matrix A − λ1 is not maximum, and we can use the
determinant for this:

rk(A− λ1) < n⇐⇒ det(A− λ1) = 0

The determinant on the right is called characteristic polynomial of A. Since this is a polynomial,
by the fundamental theorem of algebra we know that it has exactly n roots, which will be A’s
eigenvalues (the number of times a root is counted in the characteristic polynomial is called
algebraic multiplicity of the eigenvalue).

Now that we found the eigenvalues, in order to find an eigenvector associated to an eigenvalue
λi, it is sufficient to find a non-trivial solution to the linear system:

(A− λi1)v = 0

The solution space, which is ker(A− λi1), is a linear space called eigenspace of A associated to
λi. The dimension of this subspace is called geometric multiplicity of λi.

If the geometric multiplicity and the algebraic multiplicity of each eigenvalue of A coincide,
then the direct sum of the eigenspaces of A span the whole space Cn, i.e. the eigenvectors of A
form a basis of Cn called the eigenbasis of A.

Observation B.10. For A ∈ Cn×n, ker(A) is exactly the eigenspace of A for the eigenvalue 0.

Theorem B.11. Let A ∈ Cn×n. Any set v1, . . . , vk of non-null eigenvectors for pairwise distinct
eigenvalues λ1, . . . , λk are linearly independent.

Proof. Consider the first two vectors v1, v2, and a linear combination v = a1v1 + a2v2 = 0.
Consider Av:

Av = A(a1v1 + a2v2)
= a1λ1v1 + a2λ2v2 = 0

Since a2v2 = −a1v1, the equation above becomes:

a1(λ1 − λ2)v1 = 0

This implies a1 = 0 since λ1 6= λ2, and thus also a2 = 0 as v2 6= 0. Suppose by induction
v1, . . . , vk−1 are linearly independent. We can apply the same reasoning by plugging akvk =
−
∑k−1
i=1 aivi.
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B.5 Hermiticity and the spectral theorem
Definition B.12. A matrix A is said to be Hermitian if A = A†. Notice that a real Hermitian
matrix is also symmetric.

Theorem B.13. Any hermitian matrix A has real eigenvalues.

Proof. Consider an eigenvalue λ with an eigenvector v and its complex conjugate λ∗.

λv†v = v†(Av)
= v†A†v by Hermiticity
= (Av)†v
= (λv)†v
= λ∗v†v

Hence λ = λ∗.

Theorem B.14 (Spectral theorem). If a matrix A is Hermitian, there exists an orthogonal
basis of eigenvectors of A, i.e. it is unitarily diagonalizable.

Proof. We prove this by induction on the size n. If n = 1, the claim is trivial as any unitary
vector is an orthonormal eigenbasis of A. If n > 1, then by the fundamental theorem of algebra
we must have n roots of det(A − λ1). Take one, and call it λ1, along with an eigenvector v1.
Let v2, . . . , vn be an orthonormal basis for the subspace orthogonal to the one spanned by v1.
A can be rewritten as:

V †AV = {v†iAvj}ij
(
λ1 0
0 A′

)

where V is a unitary matrix formed by v1, . . . , vn, and A′ is a n−1×n−1 matrix. By induction
A′ is unitarily diagonalizable by a matrix U with columns u2, . . . , un. Thus given the following:

V ′ = V

(
1 0
0 U

)
=⇒ (V ′)†AV ′ =

(
λ1 0
0 U †A′U

)

which is diagonal.

Definition B.15 (Spectral decomposition). If Uλ is the matrix with columns formed by the
eigenvectors associated with the eigenvalue λ, then Pλ = UλU

†
λ is the orthogonal projection

matrix onto the eigenspace of λ. Any Hermitian matrix A with distinct eigenvalues λ1, . . . , λk
can be decomposed as follows:

A = λ1Pλ1 + · · ·+ λkPλk

Definition B.16 (Eigendecomposition). A diagonalizable matrix can be written as:

A = UΛU−1

where U is a unitary matrix containing all the eigenvectors of A as columns, and Λ is a diagonal
matrix containing, in order, the eigenvalues.

Observation B.17. For any matrix A, A†A and AA† are Hermitian.

Theorem B.18. If λ1, . . . , λn are the eigenvalues of A, λ1t, . . . , λnt are the eigenvalues of At.
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Proof. If A = UΛU−1 is an eigendecomposition of A then

At = UΛU−1t = U(Λt)U−1

where Λt = diag(λ1t, . . . , λnt).

Theorem B.19. If A = UΛU−1 is an eigendecomposition of A, then Ak = UΛkU−1.

Proof. We prove this by induction on k. If k = 1 the claim is trivial. If k > 1 we have:

Ak = (UΛU−1)k = UΛU−1Ak−1

= UΛU−1UΛk−1U−1 by induction
= UΛkU−1 since U−1U = 1

Theorem B.20. Let A be an n×n matrix with eigenvectors v1, . . . , vn associated with eigenval-
ues λ1, . . . , λn. The exponential eA has eigenvectors v1, . . . , vn associated with the eigenvalues
eλ1 , . . . , eλn.

Proof. Let A = UΛU−1 be an eigendecomposition of A. By definition of exponential:

eA =
∞∑
k=0

1
k!A

k

=
∞∑
k=0

1
k!UΛkU−1 by Theorem B.19

= U

( ∞∑
k=0

1
k!Λ

k

)
U−1

= UeΛU−1

We conclude the proof by showing that eΛ = diag(eλ1,...,λn), but this immediately follows from
the fact that Λk = diag(λk1, . . . , λkn).

B.6 Positive semi-definiteness
Definition B.21 (Positive semi-definiteness). An Hermitian matrix A ∈ Cn×n is positive semi-
definite (A < 0) if and only if, for any v ∈ Cn:

v†Av ≥ 0

Theorem B.22. An Hermitian matrix A is positive semi-definite if and only if every eigenvalue
of A is non-negative.

Proof. Consider the spectral decomposition of A:

v†Av = λ1v
†
1v1 + · · ·+ λnv

†
nvn

where vi is the orthogonal projection onto the eigenspace of λi. Notice that:

• The inner product is necessarily real and positive as z∗z = |z|2.
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• Every eigenvalue is real since A is Hermitian.

Theorem B.23. If A,B are two Hermitian positive (semi-)definite matrices, A+B is Hermi-
tian and positive (semi-)definite.

Proof.
v†(A+B)v = v†Av + v†Bv ≥ 0

Theorem B.24. For any matrix A, A†A is positive semi-definite.

Proof. Let z = Av:
v†A†Av = (Av)†Av = z†z ≥ 0
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Chapter C
Recap on Probability Theory
In quantum theory we extensively use these concepts, although the notation may slightly differ.

C.1 Probability space and random variables
Definition C.1 (Probability space). A probability space is a tuple (Ω,F ,P) where:

• Ω is a non-empty set of elementary events;

• F ⊆ 2Ω is the σ-algebra of events;

• P : Ω→ [0, 1] assigns a probability to each elementary event such that∑
ω∈Ω

P (ω) = 1

The following must hold:

• The σ-algebra F must contain both ∅ and Ω, and it must be closed under any countably
infinite intersection of events {Ai}i∈N:

∀i Ai ∈ F =⇒
⋂
i

Ai ∈ F

• The definition of P is extended to F as follows:

P (A) =
∑
ω∈A

P (ω) ∀A ∈ F

• P (A) = 0 if and only if A = ∅;

Definition C.2 (Conditional probability). Let A,B ∈ F be two events in a probability space
(Ω,F ,P) such that P (B) 6= 0. The conditional probability is defined as:

P (A | B) = P (A ∩B)
P (B)

Theorem C.3 (Law of total probability). Let A1, . . . , An ∈ F be a partition of Ω in a probability
space (Ω,F ,P). Then, for any event B ∈ F the following holds:

P (B) =
n∑
i=1

P (B | Ai)P (Ai)

Proof.

P (B) = P
(

n⋃
i=1

(B ∩Ai)
)

=
n∑
i=1

P (B ∩Ai) =
n∑
i=1

P (B | Ai)P (Ai)

Definition C.4 (Random variable). A random variable in a probability space (Ω,F ,P) is a
function X : Ω→ R.
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C.2 Expectation
Definition C.5. Let X be a random variable defined under a probability space (Ω,F ,P). The
expectation of X is defined as follows:

E [X] =
∑
ω∈Ω

P (ω)X(ω)

or, equivalently (by regrouping events):

E [X] =
∑
x

xP (X = x)

The sum can become an integral sum in case X is absolutely continuous (in this case P (X = x)
is of the form f(x)dx, where f(x) is called probability density function).

Theorem C.6. Let X,Y be random variables defined under a probability space (Ω,F ,P). The
following holds:

1. E [aX + bY ] = aE [X] + bE [Y ] (linearity of expectation);

2. infωX ≤ E [X] ≤ supωX;

Proof. We prove the two statements separately:

1. Directly follows from linearity of the sum.

2.

inf
ω
X =

∑
ω∈Ω

P (ω) inf
ω
X ≤

∑
ω∈Ω

P (ω)X(ω) ≤
∑
ω∈Ω

P (ω) sup
ω
X = sup

ω
X

C.3 Variance
Definition C.7. Let X be a random variable defined under a probability space (Ω,F ,P). The
variance of X can be defined as:

Var [X] = E
[
(X − E [X])2

]
Theorem C.8. Var [X] = E

[
X2]− E [X]2.

Proof.

E
[
(X − E [X])2

]
= E

[
X2 + E [X]2 + 2XE [X]

]
= E

[
X2
]

+ E
[
E [X]2

]
− 2E [X]2 linearity of expectation

= E
[
X2
]

+ E [X]2 − 2E [X]2

= E
[
X2
]
− E [X]2 by Theorem C.6

Theorem C.9. Var [X] = Var [X + c] for any c ∈ R.

Proof. The claim follows immediately by seeing that (X + c)−E [X + c] = X + c−E [X]− c =
X − E [X].
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C.4 Gaussian distribution
An absolutely continuous random variable X defined under a probability space (Ω,F ,P) is said
to follow a Gaussian distribution (i.e. X ∼ N (µ, σ2)) if:

P (X = x) = 1√
2πσ2

e−
(x−µ)2

2σ2 dx

Theorem C.10. E [X] = µ.

Proof.

E [X] =
∫
R
x

1√
2πσ2

e−
(x−µ)2

2σ2 dx

=
∫
R

(
√

2σx+ µ) 1√
2πσ2

e−x
2√2σdx replacing x←

√
2σx+ µ

=
∫
R

√
2σx 1√

π
e−x

2
dx+ µ

∫
R

1√
π
e−x

2
dx

= µ

∫
R

1√
π
e−x

2
dx since xe−x is odd

= µ since
∫
R
e−x

2
dx =

√
π

Theorem C.11. Var [X] = σ2.

Proof. To simplify the proof, we compute the variance of X − µ ∼ N (0, σ2) (we know the
variance does not change under translations by Theorem C.9).

Var [X] = Var [X − µ]

= 1√
2πσ2

∫
R
x2e−x

2/2σ2
dx− E [(X − µ)]2

= 1√
2πσ2

∫
R
x2e−x

2/2σ2
dx by Theorem C.10

= 2σ2
√
π

∫
R
x2e−x

2
dx substitution x←

√
2σx

= σ2 since
∫
R
x2e−x

2
dx =

√
π

2
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