In this preliminary exercise sheet, we will recap on some concepts that you might have learned in previous courses.

Exercise 1. Unitary and Hermitian operators

Let \mathcal{H} be a Hilbert space and $A, B \in End(\mathcal{H}, \mathcal{H})$ operators in that Hilbert space. Here you have to prove some of their properties.

Note: the operator exponential is given by the power series:

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

- (a) Show that $(e^A)^{\dagger} = e^{A^{\dagger}}$.
- (b) Suppose that [A, B] = AB BA = 0, that is, the operators A and B commute. Prove that $e^{A+B} = e^A e^B$.
- (c) Show that if the operator A is Hermitian $(A = A^{\dagger})$, then $U = e^{iA}$ is unitary $(UU^{\dagger} = U^{\dagger}U = \mathbb{I})$. Show also that for a collection $\{A_j\}_j$ of Hermitian operators, $U = \bigotimes_j e^{iA_j}$ is unitary.

Hinweis: Make use of the results in (a) and (b).

- (d) Show that if U is a unitary, then there exists a Hermitian operator A such that $U = e^{iA}$.
- (e) Suppose that V is both unitary and Hermitian. Show that the only possible eigenvalues for V are ± 1 and that $V^2 = \mathbb{I}$.
- (f) Show that adding $\alpha \mathbb{I}$, where $\alpha \in \mathbb{R}$, to a Hamiltonian of a system only induces a global phase, and thus we can always shift the energy of the ground state of the Hamiltonian to zero.
- (g) Suppose that A and B are Hermitian operators which commute [A, B] = 0. Show that in that case there exists a basis in which both A and B are diagonal, or block-diagonal.

Exercise 2. Trace and partial trace

The trace of an operator $A : \mathcal{H} \to \mathcal{H}$ is defined as $\operatorname{Tr}(A) = \sum_{j} \langle j|A|j \rangle$, where $\{|j\rangle\}_{j}$ is an orthonormal basis in \mathcal{H} . Show that the trace operation is:

- (a) Linear: $\operatorname{Tr} (\alpha A + \beta B) = \alpha \operatorname{Tr} (A) + \beta \operatorname{Tr} (B)$ for all operators A, B and coefficients $\alpha, \beta \in \mathbb{C}$;
- (b) Cyclic: Tr(ABC) = Tr(BCA) for all operators A, B, C;
- (c) Basis-independent: $\operatorname{Tr}(UAU^{\dagger}) = \operatorname{Tr}(A)$ for all operators A and arbitrary unitaries U.

The partial trace is an important concept in the quantum mechanical treatment of multi-partite systems, and it is the natural generalisation of the concept of marginal distributions in classical probability theory. Let ρ_{AB} be a density matrix on the bipartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$. We define the *reduced state* (or *marginal*) on \mathcal{H}_A as the partial trace over \mathcal{H}_B ,

$$\rho_A := \operatorname{Tr}_B(\rho_{AB}) = \sum_j (\mathbb{I}_A \otimes \langle j|_B) \ \rho_{AB} \ (\mathbb{I}_A \otimes |j\rangle_B),$$

where $\{|j\rangle_B\}_j$ is an orthonormal basis of \mathcal{H}_B .

- (d) Show that ρ_A is a valid density operator by proving it is:
 - (i) Hermitian: $\rho_A = \rho_A^{\dagger}$.
 - (ii) Positive: $\rho_A \ge 0$.
 - (iii) Normalised: $\operatorname{Tr}(\rho_A) = 1$.
- (e) Calculate the reduced density matrix of system A in the Bell state

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right), \quad \text{where} \quad |ab\rangle = |a\rangle_{A} \otimes |b\rangle_{B}.$$
 (1)

- (f) Consider a classical probability distribution P_{XY} with marginals P_X and P_Y .
 - (i) Calculate the marginal distribution P_X for

$$P_{XY}(x,y) = \begin{cases} 0.5 & \text{for } (x,y) = (0,0), \\ 0.5 & \text{for } (x,y) = (1,1), \\ 0 & \text{else}, \end{cases}$$
(2)

with alphabets $\mathcal{X}, \mathcal{Y} = \{0, 1\}.$

- (ii) How can we represent P_{XY} in form of a quantum state?
- (iii) Calculate the partial trace of P_{XY} in its quantum representation.
- (g) Can you think of an experiment to distinguish the bipartite states of parts (b) and (c)?

Exercise 3. Composability of thermal states

Given a system with Hamiltonian

$$H = \sum_{i} E_i |i\rangle \langle i|,$$

and a temperature T, we define the *thermal state*

$$\tau(T) = \frac{e^{-\frac{H}{kT}}}{Z},$$

where k is a constant (Boltzmann constant), and Z is the normalization factor which is called the *partition function*:

$$Z(T,H) = \sum_{i} e^{-\frac{E_i}{kT}}$$

Let \mathcal{H}_A and \mathcal{H}_B be two systems with the joint Hamiltonian

 $H_{AB} = H_A \otimes \mathbb{I}_B + \mathbb{I}_A \otimes H_B \quad \text{(the systems don't interact)}$

(a) Show that in this case the thermal state of the joint system can be written as a tensor product of thermal states on individual subsystems:

$$\tau_{AB} = \tau_A \otimes \tau_B$$
, or $\frac{e^{-\frac{H_{AB}}{kT}}}{Z_{AB}} = \frac{e^{-\frac{H_A}{kT}}}{Z_A} \otimes \frac{e^{-\frac{H_B}{kT}}}{Z_B}$

(b) Generalize the statement in (a) for the thermal state of n non-interacting subsystems.

Exercise 4. Energy preservation

Suppose that the system is characterized by a Hamiltonian H, and a unitary operation U is applied.

- (a) Show that if [U, H] = 0, then the unitary preserves the energy of the system.
- (b) Consider a four-level system with a Hamiltonian $H = \Delta |1\rangle \langle 1| + \Delta |2\rangle \langle 2| + 2\Delta |3\rangle \langle 3|$, written in the energy eigenbasis $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$. Come up with one non-trivial unitary U_{pres} which would preserve the energy of the system for any state, and identify the common eigenbasis of U and H. Find another unitary $U_{\text{non-pres}}$ which would not preserve the energy of the system for any state.
- (c) Give an example of an initial state of the system, for which the energy would still be preserved after applying $U_{\text{non-pres}}$.