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Les Diablerets

In this exercise sheet, we will explore the information-processing aspects of thermodynamics.

Exercise 1. The non-equilibrium quantum free energy

Consider a quantum system in state ρ and with Hamiltonian H. Its non-equilibrium quantum
free energy is a functional defined as

F (ρ) = kTS(ρ‖τ)− kT logZ, (1)

where τ = e−βH/Z is the thermal state you saw in the preliminaries, with β = (kT )−1 the
inverse temperature and Z = Tr[e−βH ] is the partition function. S(X‖Y ) is the quantum
relative entropy

S(X‖Y ) = Tr[X(logX − log Y )]. (2)

In this exercise we will study some of its properties.

(a) For what states does the non-equilibrium free energy recover its equilibrium version?

(b) Recall from equilibrium thermodynamics that the Helmholtz free energy is defined as
Feq = U −TS, with U the internal energy and S the entropy. Can you write an analogous
expression for the non-equilibrium free energy, involving the (quantum) average energy
and the von Neumann entropy?

(c) Prove that the non-equilibrium contribution kTS(ρ‖τ) is always non-negative.

Hint: Given the function θ(x, y) = x log(x/y), it holds that

θ(x1 + x2, y1 + y2) ≤ θ(x1, y1) + θ(x2, y2). (3)

(d) Prove that for a bipartite state ρAB one can neatly split its non-equilibrium free energy into
a component from A only, one from B only and a term measuring the overall correlations
between A and B (Hint: look up quantum mutual information).

(e) Take an initial state ρS . Suppose you are allowed to bring in any thermal state τB at fixed
temperature T (but with arbitrary Hamiltonian HB) and perform an arbitrary unitary
interaction USB involving both S and B. Before and after this interaction, the total
Hamiltonian is HS ⊗ IB + IS ⊗HB. Define the average extracted work W as the average
overall energy change under this process. Prove that W ≤ F (ρS)−F (ρ′S), where ρ′S in the
state of S after the interaction. Compare with the situation in equilibrium thermodynamics
and intuitively discuss when the quantum bound can be saturated.

Exercise 2. Properties of thermal operations

We defined in class the set of thermal operations C on a system with Hamiltonian HS and with
respect to a background (inverse) temperature β. Here we will prove some of its core properties.

(a) (Thermal fixed point) Prove that the thermal state is fixed: C(τS) = τS , where τS =
e−βHS/ZS .
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(b) (Time-translation symmetry) Prove that the following symmetry property is satisfied for
every ρS and time t:

C ◦ Ut(ρS) = Ut ◦ C(ρS), (4)

where Ut(X) = e−iHStXeiHSt.

(c) (Coherence non-generation) Prove that for every state incoherent state ρSA with Hamil-
tonian HS ⊗ IA + IS ⊗HA, one has that C ⊗ IA(ρSA) is incoherent too (IA is the identity
channel).

(d) (Mode maps into mode) For every mode of coherence ω, and every state ρS

C(ρ(ω)S ) = C(ρS)(ω). (5)

(e) Are properties (b), (c), (d) equivalent?

(f) (Convexity) Prove that thermal operations are a convex set, meaning that if C1 and C2 are
thermal operations also pC1 + (1− p)C2 for p ∈ [0, 1] is a thermal operation.

Exercise 3. Constructing thermal monotones

Suppose that σ = C(ρ), where C is a thermal operation. Let ~x and ~y be the vectors of populations
(occupation of energy levels) of ρ and σ, respectively.

For any h convex function in R, define the f -divergence

f(~x) =
∑
i

gih(xi/gi), (6)

where gi = e−βEi/Z. Prove that
f(~x) ≥ f(~y), (7)

so that each f can be interpreted as a generalized free energy.

Exercise 4. Work cost of processes on a quantum computer

Consider a quantum computer with a register of n qubits described by the trivial Hamilto-
nian H = 0. Assume that the quantum computer can perform standard unitary gates at no
work cost on the register. Suppose furthermore that the quantum computer has two functions
reset zerok and extract workk defined as follows. The function reset zerok transforms
the k-th qubit to the |0〉 state, regardless of the k-th qubit’s initial state, at a work cost equal
to kT ln 2 where T is some fixed temperature and k is Boltzmann’s constant. The function
extract workk is such that if the k-th qubit is in the |0〉 state, then it is transformed to
the maximally mixed state while extracting kT ln 2 work. (I.e., the functions reset zerok and
extract workk operate on the k-th qubit like the reset procedure and the work extraction
process do on a Szilárd engine.)

(a) Suppose that when you turn on your quantum computer, the memory register is uninitial-
ized. We model this situation by assuming that the register is in a maximally mixed state.
How much work is required to restore the memory register to the computational all-zero
state |0〉⊗n? How about if you would like to initialize it in the all-one state |1〉⊗n? How
about if you would like to prepare a given fixed computational basis state |x1〉|x2〉 . . . |xn〉?
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(b) Find protocols and their associated work cost in order to achieve the following tasks:

(i) Suppose three qubits of the memory are entangled in the GHZ state

|GHZ〉 =
(|000〉+ |111〉)√

2
.

Find a protocol that resets the first qubit to |0〉 while leaving the reduced state of
the second and third qubits unchanged.

(ii) Suppose three qubits of the memory are in the classically correlated state

ρ =
1

3
|000〉〈000|+ 2

3
|111〉〈111|.

Find a protocol that resets the first qubit to |0〉 while leaving the reduced state of
the second and third qubits unchanged.

(iii) Implement a measurek,` function that will set the `-th qubit to the classical value
of the k-th qubit in the computational basis, i.e., such that:

measurek,`
(
|i〉〈i|k|j〉〈j|`

)
= |i〉〈i|k|i〉〈i|` ∀i, j.

(c) Using the entropic bounds introduced in the lecture, determine the optimal work cost of
the tasks (i), (ii), and (iii). Are the protocols you found optimal? If not, try to find
optimal ones.

Exercise 5. Entropy and Observers in Gibbs’ paradox

When two different gases mix, the system acquires a contribution to the entropy, the entropy
of mixing, in addition to the entropy associated with each gas. Gibbs’ paradox refers to the
discontinuity when we take the gases to be arbitrarily similar. At which point are they no
longer two different gases and is the entropy of mixing no longer present? Here, we study an
example presented in Jaynes’ excellent treatment of the subject.1

(a) A box contains two volumes V1 and V2 of identical argon gases at the same pressure and
temperature. We remove the separator that keeps the gases apart, allowing them to mix
freely. What is the entropy change of the full system?

(b) Suppose that the two volumes of argon gas are in fact two different kinds of argon, A1
and A2. But these two different types of argon haven’t been discovered yet and it still
looks like we’re mixing two volumes of identical argon gases. A1 and A2 are identical in all
physical aspects (mass, charge, etc.), except that A2 is soluble in Whifnium, a hypothetical
substance that hasn’t been discovered yet. Consider the mixing process as in (a). What
is the entropy change of the full system? Explain your answer.

(c) 100 years later, we’ve discovered Whifnium and we know there are two types of Argon,
A1 and A2. Consider the mixing process as in (a). What is the entropy change of the full
system? Explain your answer.

1https://link.springer.com/chapter/10.1007/978-94-017-2219-3_1
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