
Quantum Thermodynamics summer school

Solution 1 — Sunday
22.08.2021

Les Diablerets

In this preliminary exercise sheet, we will recap on some concepts that you might have learned in previous
courses.

Exercise 1. Unitary and Hermitian operators

Let H be a Hilbert space and A,B ∈ End(H,H) operators in that Hilbert space. Here you have to prove
some of their properties.
Note: the operator exponential is given by the power series:

eA =

∞∑
n=0

1

n!
An

(a) Show that (eA)† = eA
†
.

Solution

(eA)† =
∞∑
n=0

1

n!
(An)† =

∞∑
n=0

1

n!
(A†)n = eA

†
.

(b) Suppose that [A,B] = AB − BA = 0, that is, the operators A and B commute. Prove that

eA+B = eAeB.

Solution The operators A and B commute, hence AB = BA – which means that the
order does not matter for these operators when they are multiplied, and we can use the
binomial theorem in a usual way:

eA+B =
∞∑
n=0

1

n!
(A+B)n =

∞∑
n=0

1

n!

n∑
m=0

Cmn A
mBn−m =

∞∑
n=0

1

n!

n∑
m=0

n!

m!(n−m)!
AmBn−m

=

∞∑
n=0

n∑
m=0

1

m!(n−m)!
AmBn−m = eAeB.

In the last step, we have used the Cauchy formula for the product of two series.

(c) Show that if the operator A is Hermitian (A = A†) , then U = eiA is unitary (UU† = U†U = I).
Show also that for a collection {Aj}j of Hermitian operators , U =

⊗
j e

iAj is unitary.

Hinweis: Make use of the results in (a) and (b).

Solution From (a) it follows that U † = e−iA
†

= e−iA. Then since [A,A] = 0 (every
operator commutes with itself),

U †U = e−iAeiA = e−iA+iA = I.

(d) Show that if U is a unitary, then there exists a Hermitian operator A such that U = eiA.
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Solution Let us write U in its diagonal form: U = WDW † whereD = diag(eiα1 , eiα2 , . . . )
with αj ∈ R, and W is a unitary. Let us choose H = Wdiag(α1, α2, . . . )W

†. H is Hermi-
tian, as αj are real, and

eiH =

∞∑
n=0

1

n!
(Wdiag(α1, α2, . . . )W

†)n =

∞∑
n=0

in

n!
Wdiag(α1, α2, . . . )

nW †

= Wei·diag(α1,α2,... )W † = WDW † = U.

(e) Suppose that V is both unitary and Hermitian. Show that the only possible eigenvalues for V are

±1 and that V 2 = I.

Solution From the definitions of Hermitian and unitary operators it follows that I =
V †V = V V = V 2. Suppose that |φ〉 is an eigenvector of V , corresponding to the eigenvalue
λ: V |φ〉 = λ|φ〉. The complex conjugate reads 〈φ|V † = 〈φ|λ∗; the product of these two
expressions gives

λλ∗ = 〈φ|V †V |φ〉 = 1⇒ |λ|2 = 1.

Additionally, note

λ∗ = 〈φ|V †|φ〉 = 〈φ|V |φ〉 = λ

Hence, λ is real, and |λ|2 = 1, which means λ = ±1.

(f) Show that adding αI, where α ∈ R, to a Hamiltonian of a system only induces a global phase, and
thus we can always shift the energy of the ground state of the Hamiltonian to zero.

Solution Suppose that we initially have a Hamiltonian H, and we add a term αI: H ′ =
H + αI. First, let us note that H ′ has the same set of eigenfunctions {|ψ〉i}i as H:

H ′|ψ〉i = (H + αI)|ψ〉i = H|ψ〉i + α|ψ〉i = (Ei + α)|ψ〉i

All eigenvalues shift by α for H ′, therefore we can always choose the parameter α such
that the energy of the ground state E0 is equal to 0.

The evolution of the system is governed by a unitary U ′:

U ′ = e−iH
′t = e−iHt−iαIt

[H,I]=0
= = e−iHte−iαt

Hence, for the evolution of the state we only acquire a phase factor e−iαt.

(g) Suppose that A and B are Hermitian operators which commute [A,B] = 0. Show that in that case
there exists a basis in which both A and B are diagonal, or block-diagonal.

Solution Let us consider an eigenbasis of A: {|ψ(
ij)〉}i,j , where we take into account

that some eigenvalues of A can be degenerate:

A|ψ(j)
i 〉 = λi|ψ(j)

i 〉 ∀j.

For all eigenvectors of A |φ〉 it holds that

AB|φ〉 = BA|φ〉 = λiB|φ〉.
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Hence, B|φ〉 is an eigenvector of A, with an eigenvalue λi. If λi is non-degenerate, then
B|φ〉 can only differ from |ψi〉 by a constant factor: B|φ〉 = µi|ψi〉, and |ψi〉 is an eigenstate
of B. This gives us both A and B having a diagonal element in their representation in

{|ψ(
ij)〉}i,j .

If λi is degenerate, then B|φ〉 can be written as a combination of {|ψ(
ij)〉}j ; B can be

seen as acting internally in that subspace. This gives us A having a diagonal entries in its

matrix representation in {|ψ(
ij)〉}i,j , and B having a block-diagonal entry.

Exercise 2. Trace and partial trace

The trace of an operator A : H → H is defined as Tr (A) =
∑

j〈j|A|j〉, where {|j〉}j is an orthonormal
basis in H. Show that the trace operation is:

(a) Linear: Tr (αA+ βB) = αTr (A) + β Tr (B) for all operators A,B and coefficients α, β ∈ C;

(b) Cyclic: Tr (ABC) = Tr (BCA) for all operators A,B,C;

(c) Basis-independent: Tr
(
UAU†

)
= Tr (A) for all operators A and arbitrary unitaries U .

The partial trace is an important concept in the quantum mechanical treatment of multi-partite systems,
and it is the natural generalisation of the concept of marginal distributions in classical probability theory.
Let ρAB be a density matrix on the bipartite Hilbert space HA ⊗ HB. We define the reduced state (or
marginal) on HA as the partial trace over HB,

ρA := TrB(ρAB) =
∑
j

(IA ⊗ 〈j|B) ρAB (IA ⊗ |j〉B),

where {|j〉B}j is an orthonormal basis of HB.

(d) Show that ρA is a valid density operator by proving it is:

(i) Hermitian: ρA = ρ†A.

(ii) Positive: ρA ≥ 0.

(iii) Normalised: Tr (ρA) = 1.

Solution

(i) Remember that ρAB can always be written as

ρAB =
∑
i,j,k,l

cij;kl |i〉〈k|A ⊗ |j〉〈l|B, (S.1)

for some bases {|i〉A} and {|j〉B} of HA and HB, respectively, and cij;kl = c†kl;ij is
hermitian. The reduced density operator ρA is then given by

ρA = TrB(ρAB) =
∑
i,k

∑
m

cim;km|i〉〈k|A (S.2)

as can easily be verified. Hermiticity of ρA follows from

ρ†A =
∑
i,k

∑
m

c†im;km (|i〉〈k|A)† =
∑
i,k

∑
m

ckm;im|k〉〈i|A = ρA. (S.3)
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(ii) Since ρAB ≥ 0 is positive, its scalar product with any pure state is positive. Let |ψ〉A
an arbitrary pure state in HA and define |Ψm〉AB = |ψ〉A⊗|m〉B, a state on HA⊗HB:

0 ≤
∑
m

〈Ψm|ρAB|Ψm〉

=
∑
m

〈ψ|A ⊗ 〈m|BρAB|ψ〉A ⊗ |m〉B

=
∑
m

∑
i,j,k,l

cij;kl〈ψ |i〉〈k |ψ〉A〈m |j〉〈l |m〉B

=
∑
i,k

∑
m

cim;km〈ψ |i〉〈k |ψ〉A

= 〈ψ|ρA|ψ〉

(S.4)

Because this is true for any |ψ〉 on mathcalHA, it follows that ρA is positive.

(iii) Consider

Tr (ρA) =
∑
i,j

∑
m,n

cim;km〈n |i〉〈k |n〉

=
∑
m,n

cnm;nm = Tr (ρAB) = 1.
(S.5)

(e) Calculate the reduced density matrix of system A in the Bell state

|Ψ〉 =
1√
2

(|00〉+ |11〉) , where |ab〉 = |a〉A ⊗ |b〉B. (1)

Solution The reduced state is mixed, even though |Ψ〉 is pure:

ρAB = |Ψ〉〈Ψ| = 1

2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
(S.6)

TrBρAB =
1

2

(
|0〉〈0|+ |1〉〈1|

)
=

IA
2
. (S.7)

(f) Consider a classical probability distribution PXY with marginals PX and PY .

(i) Calculate the marginal distribution PX for

PXY (x, y) =


0.5 for (x, y) = (0, 0),

0.5 for (x, y) = (1, 1),

0 else,

(2)

with alphabets X ,Y = {0, 1}.
(ii) How can we represent PXY in form of a quantum state?

(iii) Calculate the partial trace of PXY in its quantum representation.

Solution

(i) Using PX(·) =
∑

y∈Y PXY (·, y), we immediately obtain

PX(0) = 0.5, PX(1) = 0.5. (S.8)
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(ii) A probability distribution PZ = {PZ(z)}z may be represented by a state

ρZ =
∑
z

PZ(z)|z〉〈z| (S.9)

for a basis {|z〉}z of a Hilbert space HZ . In this case we can create a two-qubit system
with composed Hilbert space HX ⊗HY in state

ρXY =
1

2

(
|00〉〈00|+ |11〉〈11|

)
. (S.10)

(iii) The reduced state of qubit X is

ρX =
1

2

(
|0〉〈0|+ |1〉〈1|

)
=

IX
2
. (S.11)

Notice that the reduced states of this classical state and the Bell state are the same
whereas the state of the global state is very different – in particular, the latter is
a pure state that can be very useful in quantum communication and cryptography
whereas the former is not.

(g) Can you think of an experiment to distinguish the bipartite states of parts (b) and (c)?

Solution One could for instance measure the two states in the Bell basis,

|ψ1〉 =
|00〉+ |11〉√

2
, |ψ2〉 =

|00〉 − |11〉√
2

,

|ψ3〉 =
|01〉+ |10〉√

2
, |ψ4〉 =

|01〉 − |10〉√
2

.

(S.12)

The Bell state we analysed corresponds to the first state of this basis, |Ψ〉 = |ψ1〉, and
a measurement in the Bell basis would always have the same outcome. For the classical
state, however, ρXY = 1

2(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|), so with probability 1
2 a measurement in this

basis will output |ψ2〉, and we will know we had the classical state. Of course, if we only
have access to a single copy we will find out about the difference only with probability 1

2 .
However, with arbitrarily many copies we will find out which state we have with very high
probability after a few measurements.

Exercise 3. Composability of thermal states

Given a system with Hamiltonian

H =
∑
i

Ei|i〉〈i|,

and a temperature T , we define the thermal state

τ(T ) =
e−

H
kT

Z
,

where k is a constant (Boltzmann constant), and Z is the normalization factor which is called the partition
function:

Z(T,H) =
∑
i

e−
Ei
kT .

Let HA and HB be two systems with the joint Hamiltonian

HAB = HA ⊗ IB + IA ⊗HB (the systems don’t interact)
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(a) Show that in this case the thermal state of the joint system can be written as a tensor product of
thermal states on individual subsystems:

τAB = τA ⊗ τB , or
e−

HAB
kT

ZAB
=
e−

HA
kT

ZA
⊗ e−

HB
kT

ZB

Solution Let us rewrite the Hamiltonian of AB in terms of eigenbases of A and B:

HAB =
∑
i

EAi |i〉〈i| ⊗ IB + IA ⊗
∑
j

EBj |j〉〈j|

It immediately follows that the eigenvalues of HAB are EAi +EBj , ∀i, j. Then the thermal

state on AB (here we denote β = 1
kT )

τAB =
e−βHAB∑

i,j e
−β(EA

i +EB
j )

=
e−βHA⊗IB+IA⊗HB∑

i,j e
−β(EA

i +EB
j )

=
e−βHA⊗IB∑

i e
−βEA

i

e−βIA⊗HB∑
j e
−βEB

j

=

=
e−βHA

ZA
⊗ e−βHB

ZB
= τA ⊗ τB.

(b) Generalize the statement in (a) for the thermal state of n non-interacting subsystems.

Solution By induction from (a), for n non-interacting systems with local Hamiltonians
H1, . . . ,Hn the thermal state is written as

τ = τ1 ⊗ · · · ⊗ τn, where τj =
e−βHj

Zj
.

Exercise 4. Energy preservation

Suppose that the system is characterized by a Hamiltonian H, and a unitary operation U is applied.

(a) Show that if [U,H] = 0, then the unitary preserves the energy of the system.

Solution The energy of the system after the unitary is applied (we use the circularity
of trace and HU = UH):

E′ = Tr (()Hρ′) = Tr (()HUρU †) = Tr (()UHρU †) = Tr (()U †UHρ) = Tr (()Hρ) = E.

(b) Consider a four-level system with a Hamiltonian H = ∆|1〉〈1| + ∆|2〉〈2| + 2∆|3〉〈3|, written in

the energy eigenbasis {|0〉, |1〉, |2〉, |3〉}. Come up with one non-trivial unitary Upres which would

preserve the energy of the system for any state, and identify the common eigenbasis of U and H.

Find another unitary Unon-pres which would not preserve the energy of the system for any state.
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Solution The Hamiltonian of the system is degenerate: the states |1〉 and |2〉 correspond
to the same energy ∆:

H =


0 0 0 0
0 ∆ 0 0
0 0 ∆ 0
0 0 0 2∆


Since the levels |1〉 and |2〉 have the same energy, swapping their populations will not
change the net energy:

Upres = (|1〉〈2|+ |2〉〈1|) + (|0〉〈0|+ |3〉〈3|) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The common eigenbasis of U and H is: {|0〉, 1√
2
(|1〉+ |2〉), 1√

2
(|1〉 − |2〉), |3〉}.

If we additionally swap the populations of the levels |0〉 and |3〉, the unitary is no longer
energy-preserving:

Unon-pres = (|1〉〈2|+ |2〉〈1|) + (|0〉〈3|+ |3〉〈0|) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

(c) Give an example of an initial state of the system, for which the energy would still be preserved after

applying Unon-pres.

Solution For the example we have given, the energy would still be preserved if, for
instance, ρ = |1〉〈1|. Then the state of the system after the application of U is ρ′ = |2〉〈2|,
and

E = Tr (() ρH) = ∆

E′ = Tr (() ρ′H) = ∆.
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