
Quantum Thermodynamics summer school

Exercise Sheet 4 — Thursday
26.08.2021

Les Diablerets

In this exercise sheet, we will explore correlations and partition functions in thermodynamic
systems, and look at an example of a Lindblad master equation.

Exercise 1. An inequality for traces

In this exercise, we prove an inequality used in the lecture to prove the bound on ratios of
partition functions.

Consider two Hermitian positive operators A and B.

(a) First show that Tr (AB) ≤ ||B||Tr (A), where ||.|| is the operator norm.

Hint: Consider Tr (AB) = Tr
(
B1/2AB1/2

)
.

(b) Show that

| log Tr
(
eA+B

)
− log Tr

(
eA
)
| =

∣∣∣∣∫ 1

0

d

dt
log Tr

(
eA+tB

)
dt

∣∣∣∣ .
(c) Using the results of (a) and (b), prove the following inequality

| log Tr
(
eA+B

)
− log Tr

(
eA
)
| ≤ ||B||.

Then, we obtain the result about partition functions by choosing e.g. A = βH and
B = βV .

Exercise 2. Mutual information and correlations

The quantum mutual information is defined for a bipartite state ρAB as

I(A : B) = S(ρA) + S(ρB)− S(ρAB).

(a) Show that I(A : B) = D(ρAB|ρA ⊗ ρB), where D(ρ|σ) = Tr (ρ(log(ρ− σ)) is the quantum
relative entropy.

(b) Show that the mutual information upper bounds all correlation functions

I(A : B) ≥ max
||OA||,||OB ||≤1

|Tr
(
(OA ⊗OB)ρAB

)
− Tr

(
OAρ

A
)

Tr
(
OBρ

b
)
|. (1)

Hint: Use Pinsker’s inequality D(ρ|σ) ≤ ||ρ−σ||
2
1

2 and the definition of the 1-norm.
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Exercise 3. Bounding the average fluctuations around the late-time value

In the lecture, we have seen how we can bound the correlations for the system evolving under
a Hamiltonian with non-degenerate energy gaps. The same proof technique can be applied in a
slightly different setting.

Suppose that we consider two observables A and B. For them, let us introduce a correlation
function

CAB(t) ≡ 〈A(t)B〉β = Tr (ρA(t)B) ,

where the evolution is generated by a time-independent Hamiltonian H, and A(t) = eiHtAe−iHt

is the evolved observable in the Heisenberg picture. We additionally assume that the energy
gaps of H are non-degenerate, and [ρ,H] = 0.

In the limit t → ∞, we can define CAB∞ = limT→∞
∫ T
0

dt
T C

AB(t), and the average fluctuations
around the late-time value as

σ2C = lim
T→∞

∫ T

0

dt

T

(
CAB(t)− CAB∞

)2
.

(a) Expand σ2C in energy eigenbasis, and show that

σ2C =
∑
j 6=k

ρjjρkkAjkAkjBjkBkj ,

where Akj , Bjk are matrix elements in the energy eigenbasis, A =
∑

jk Ajk|j〉〈k|. Use the
fact that the energy gaps are non-degenerate!

(b) Show that the expression above can be upper bounded by∑
j 6=k

ρjjρkkAjkAkjBjkBkj ≤ max
j 6=k
{|AkjBjk|}

∑
j 6=k

ρjjρkk |AjkBkj | .

Notice that we can also write maxj 6=k{|AkjBjk|} ≤ ||A||||B||, but we would be losing an
exponentially small factor in the process).

(c) Now use the Cauchy-Schwarz inequality, and prove

σ2C ≤ max
j 6=k
{|AkjBjk|}

√
Tr (ρAρA)

√
Tr (ρBρB).

(d) Apply the Cauchy-Schwarz inequality yet again, and obtain

σ2C ≤ ‖A‖ ‖B‖max
j 6=k
{|AkjBjk|}Tr

(
ρ2
)
.

Hint: For positive operators Tr (PQ) ≤ ‖P‖Tr (Q). You can show this in the second
exercise.

We have successfully derived an upper bound on the late-time fluctuations

σ2C ≤‖A‖ ‖B‖max
j 6=k
{|AkjBjk|}Tr

(
ρ2
)
.

Note that the bound depends on Tr
(
ρ2
)
. This quantity is the inverse of what is sometimes

called the effective dimension of the system: d−1eff = Tr
(
ρ2
)
.
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(e) How does the upper bound look like for a microcanonical ensemble ρ = I
d? And for a

thermal state ρ ≡ e−βH/Zβ at inverse temperature β with partition function Zβ?

To establish a connection between free energy and this effective dimension, let us consider Rényi
entropy of order q of a probability distribution p

Sq(p) =
1

1− q
log
∑
i

pqi , q ∈ (0,∞).

We can imagine the probability distribution p as describing a Gibbs state at temperature T0 for
some energies Ei such that

∑
i exp(−Ei

T0
) = 1.

(f) The free energy is given by F = −T logZ. Show that

ST0/T = − F

T − T0
.

(g) The quantum generalization of Rényi entropy is defined by Sq(ρ) = 1
1−q log Tr (ρq). Using

previous considerations, derive a bound on Tr
(
ρ2
)

in terms of free energy F .

Exercise 4. Weakly damped harmonic oscillator

A weakly damped harmonic oscillator with the Hamiltonian H = ~ωâ+â (for example, coupled
to a heat bath) can be described by the following Lindblad master equation for the density
matrix:

d

dt
ρ(t) =

i

~
[ρ(t), H] + γ(aρa+ − 1

2
a+aρ− 1

2
ρa+a)

Let’s assume that the only non-zero matrix elements are ρij with i, j ∈ {0, 1}. What do the
equations for these matrix elements look like? What is the decay rate for the off-diagonal element
ρ01 (“dephasing rate”) ? In the general case of an arbitrary ρ , what does the equation for the
matrix element ρnn look like?
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